Publikace UTB
Repozitář publikační činnosti UTB

Polyaniline cryogels: Biocompatibility of novel conducting macroporous material

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Polyaniline cryogels: Biocompatibility of novel conducting macroporous material en
dc.contributor.author Humpolíček, Petr
dc.contributor.author Radaszkiewicz, Katarzyna Anna
dc.contributor.author Capáková, Zdenka
dc.contributor.author Pacherník, Jiri
dc.contributor.author Bober, Patrycja
dc.contributor.author Kašpárková, Věra
dc.contributor.author Rejmontová, Petra
dc.contributor.author Lehocký, Marián
dc.contributor.author Ponížil, Petr
dc.contributor.author Stejskal, Jaroslav
dc.relation.ispartof Scientific Reports
dc.identifier.issn 2045-2322 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 8
utb.relation.issue 1
dc.type article
dc.language.iso en
dc.publisher Nature Publishing Group
dc.identifier.doi 10.1038/s41598-017-18290-1
dc.relation.uri https://www.nature.com/articles/s41598-017-18290-1
dc.description.abstract Polyaniline cryogel is a new unique form of polyaniline combining intrinsic electrical conductivity and the material properties of hydrogels. It is prepared by the polymerization of aniline in frozen poly(vinyl alcohol) solutions. The biocompatibility of macroporous polyaniline cryogel was demonstrated by testing its cytotoxicity on mouse embryonic fibroblasts and via the test of embryotoxicity based on the formation of beating foci within spontaneous differentiating embryonic stem cells. Good biocompatibility was related to low contents of low-molecular-weight impurities in polyaniline cryogel, which was confirmed by liquid chromatography. The adhesion and growth of embryonic stem cells, embryoid bodies, cardiomyocytes, and neural progenitors prove that polyaniline cryogel has the potential to be used as a carrier for cells in tissue engineering or bio-sensing. The surface energy as well as the elasticity and porosity of cryogel mimic tissue properties. Polyaniline cryogel can therefore be applied in bio-sensing or regenerative medicine in general, and mainly in the tissue engineering of electrically excitable tissues. © 2017 The Author(s). en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007736
utb.identifier.obdid 43879620
utb.identifier.scopus 2-s2.0-85040452403
utb.identifier.wok 000419659600016
utb.source j-scopus
dc.date.accessioned 2018-02-26T10:20:03Z
dc.date.available 2018-02-26T10:20:03Z
dc.description.sponsorship Czech Science Foundation [17-05095S]; Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [LO1504]; European Regional Development Fund [CZ.1.05/2.1.00/19.0409]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Humpolíček, Petr
utb.contributor.internalauthor Capáková, Zdenka
utb.contributor.internalauthor Kašpárková, Věra
utb.contributor.internalauthor Rejmontová, Petra
utb.contributor.internalauthor Lehocký, Marián
utb.contributor.internalauthor Ponížil, Petr
utb.fulltext.affiliation Petr Humpolíček http://orcid.org/0000-0002-6837-6878 1,2 , Katarzyna Anna Radaszkiewicz 3 , Zdenka Capáková 1 , Jiří Pacherník 3 , Patrycja Bober 4 , Věra Kašpárková 1,2 , Petra Rejmontová 1,2 , Marián Lehocký 1,2 , Petr Ponížil 1,2 & Jaroslav Stejskal 4 1 Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01, Zlin, Czech Republic. 2 Faculty of Technology, Tomas Bata University in Zlin, 760 01, Zlin, Czech Republic. 3 Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic. 4 Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic. Correspondence and requests for materials should be addressed to P.H. (email: humpolicek@utb.cz)
utb.fulltext.dates Received: 8 August 2017 Accepted: 5 December 2017 Published: 09 January 2018
utb.fulltext.references 1. Jeong, J. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015). 2. Cui, X. et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 56, 261–272 (2001). 3. Cui, X. & Martin, D. Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films. Sens. Actuators A-Phys. 103, 384–394 (2003). 4. Abidian, M. R., Corey, J. M., Kipke, D. R. & Martin, D. C. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6, 421–429 (2010). 5. Petrov, P., Mokreva, P., Kostov, I., Uzunova, V. & Tzoneva, R. Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: Synthesis and application in tissue engineering. Carbohydr. Polym. 140, 349–355 (2016). 6. Sirivisoot, S., Pareta, R. & Harrison, B. S. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus 4, 20130050 (2014). 7. Vishnoi, T. & Kumar, A. Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation. J. Mater. Sci. Mater. Med. 24, 447–459 (2013). 8. Subramanian, A., Krishnan, U. M. & Sethuraman, S. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J. Mater. Sci. Mater. Med 23, 1797–1809 (2012). 9. Prabhakaran, M. P., Ghasemi-Mobarakeh, L., Jin, G. & Ramakrishna, S. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J. Biosci. Bioeng. 112, 501–507 (2011). 10. Gelmi, A. et al. Direct mechanical stimulation of stem cells: a beating electromechanically active scaffold for cardiac tissue engineering. Adv. Healthc. Mater. 5, 1471–1480 (2016). 11. Stejskal, J. Conducting polymer hydrogels. Chem. Pap. 71, 269–291 (2017). 12. Stejskal, J. et al. Polyaniline cryogels supported with poly(vinyl alcohol): soft and conducting. Macromolecules 50, 972–978 (2017). 13. Guiseppi-Elie, A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31, 2701–2716 (2010). 14. Humpolíček, P., Kašpárková, V., Sáha, P. & Stejskal, J. Biocompatibility of polyaniline. Synth. Met. 162, 722–727 (2012). 15. Stejskal, J. & Gilbert, R. G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem. 74, 857–867 (2002). 16. Stejskal, J. & Sapurina, I. Polyaniline: Thin films and colloidal dispersions - (IUPAC technical report). Pure Appl. Chem. 77, 815–826 (2005). 17. van Oss, C. J. Hydrophobicity of biosurfaces — Origin, quantitative determination and interaction energies. Colloids Surf. B: Biointerfaces 5, 91–110 (1995). 18. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993). 19. Humpolíček, P. et al. Stem cell differentiation on conducting polyaniline. RSC Adv. 5, 68796–68805 (2015). 20. Radaszkiewicz, K. A. et al. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro. Rev. Sci. Instrum. 87, 024301 (2016). 21. Bartova, E. et al. The level and distribution pattern of HP1 beta in the embryonic brain correspond to those of H3K9me1/me2 but not of H3K9me3. Histochem. Cell Biol. 145, 447–461 (2016). 22. Hsiao, E. C. et al. Marking embryonic stem cells with a 2A self-cleaving peptide: A NKX2-5 emerald GFP BAC reporter. Plos One 3, e2532 (2008). 23. Vesela, I., Kotasova, H., Jankovska, S., Prochazkova, J. & Pachernik, J. Leukaemia inhibitory factor inhibits cardiomyogenesis of mouse embryonic stem cells via STAT3 activation. Folia Biol. (Praha) 56, 165–172 (2010). 24. Sepulveda, J. et al. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: Role for regulating early cardiac gene expression. Mol. Cell. Biol. 18, 3405–3415 (1998). 25. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). 26. Patel, A. J. et al. Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function. J. Phys. Chem. B 116, 2498–2503 (2012). 27. Latour, R. A. Biomaterials: protein-surface interactions. Encyclopedia of biomaterials and biomedical engineering 1, 270–278 (2005). 28. Loh, Q. L. & Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B-Rev. 19, 485–502 (2013). 29. Akhtar, R., Sherratt, M. J., Cruickshank, J. K. & Derby, B. Characterizing the elastic properties of tissues. Mater. Today 14, 96–105 (2011). 30. Jenkins, F. P., Robinson, J. A., Gellatly, J. B. & Salmond, G. W. The no-effect dose of aniline in human subjects and a comparison of aniline toxicity in man and the rat. Food Cosmet. Toxicol 10, 671–679 (1972). 31. Signorin, J., Ulrich, C., Butt, M. & D’Amato, E. 13-Week inhalation toxicity study (including 6-and 13-week recovery periods) with ammonium persulfate dust in Albino rats. Inhal. Toxicol. 13, 1033–1045 (2001). 32. Stejskal, J. & Trchová, M. Aniline oligomers versus polyaniline. Polym. Int. 61, 240–251 (2012). 33. GRAS 2011. Select Committee on GRAS Substances (SCOGS) Opinion: Ammonium sulfate”. U.S. Food and Drug Administration. August 16, 2011). 34. Kašpárková, V. et al. Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline. Polym. Adv. Technol. 27, 156–161 (2016). 35. Seiler, A. E. M. & Spielmann, H. The validated embryonic stem cell test to predict embryotoxicity in vitro. Nature Protocols 6, 961–978 (2011). 36. Stejskal, J., Sapurina, I., Prokeš, J. & Zemek, J. In-situ polymerized polyaniline films. Synth. Met. 105, 195–202 (1999). 37. Kim, H., Hobbs, H. L., Wang, L., Rutten, M. J. & Wamser, C. C. Biocompatible composites of polyaniline nanofibers and collagen. Synth. Met. 159, 1313–1318 (2009). 38. McKeon, K. D., Lewis, A. & Freeman, J. W. Electrospun poly(D,L-lactide) and polyaniline scaffold characterization. J. Appl. Polym. Sci. 115, 1566–1572 (2010). 39. Rahman, N. A. et al. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion. Mater. Chem. Phys. 138, 333–341 (2013). 40. Li, L., Ge, J., Guo, B. & Ma, P. X. In situ forming biodegradable electroactive hydrogels. Polym. Chem. 5, 2880–2890 (2014). 41. Bidez, P. R. et al. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J. Biomater. Sci. Polym. Ed. 17, 199–212 (2006). 42. Stejskal, J. et al. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth. Met. 195, 286–293 (2014).
utb.fulltext.sponsorship This work was supported by the Czech Science Foundation (17-05095S), and by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). The European Regional Development Fund (Grant CZ.1.05/2.1.00/19.0409) is thanked for thermal conductivity analyser (C-term technologies, model TCi).
utb.wos.affiliation [Humpolicek, Petr; Capakova, Zdenka; Kasparkova, Vera; Rejmontova, Petra; Lehocky, Marian; Ponizil, Petr] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin 76001, Czech Republic; [Humpolicek, Petr; Kasparkova, Vera; Rejmontova, Petra; Lehocky, Marian; Ponizil, Petr] Tomas Bata Univ Zlin, Fac Technol, Zlin 76001, Czech Republic; [Radaszkiewicz, Katarzyna Anna; Pachernik, Jiri] Masaryk Univ, Fac Sci, Inst Expt Biol, Brno 62500, Czech Republic; [Bober, Patrycja; Stejskal, Jaroslav] Acad Sci Czech Republ, Inst Macromol Chem, CR-16206 Prague 6, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
utb.fulltext.projects 17-05095S
utb.fulltext.projects NPU I (LO1504)
utb.fulltext.projects CZ.1.05/2.1.00/19.0409
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International