TBU Publications
Repository of TBU Publications

Calibration of low-cost accelerometer and magnetometer with differential evolution

DSpace Repository

Show simple item record

dc.title Calibration of low-cost accelerometer and magnetometer with differential evolution en
dc.contributor.author Kunčar, Aleš
dc.contributor.author Sysel, Martin
dc.contributor.author Urbánek, Tomáš
dc.relation.ispartof ICMT 2017 - 6th International Conference on Military Technologies
dc.identifier.isbn 978-1-5386-1988-9
dc.date.issued 2017
dc.citation.spage 414
dc.citation.epage 418
dc.event.title 6th International Conference on Military Technologies, ICMT 2017
dc.event.sdate 2017-05-31
dc.event.edate 2017-06-02
dc.type conferenceObject
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/MILTECHS.2017.7988795
dc.relation.uri http://ieeexplore.ieee.org/abstract/document/7988795/
dc.subject accelerometer en
dc.subject calibration en
dc.subject differential evolution en
dc.subject magnetometer en
dc.subject MEMS en
dc.subject sensor en
dc.description.abstract Generally, low-cost MEMS (Micro-ElectroMechanical Systems) sensors are used in many engineering applications; however, their accuracy is influenced by many factors; therefore, the calibration is an actual issue and it is necessary to be provided before its use in advanced applications. This research paper describes calibration method for three axis accelerometer and magnetometer. The calibration algorithm uses differential evolution (DE) algorithm. This calibration method calculates scale factors, misalignment angles, bias for accelerometer, and magnetic deviations for magnetometer. The performance of this method is analysed in the experiment on the module LSM303DLHC from STMicroelectronics. The experimental results are furthermore compared to the traditional methods. The results show that the root mean square error is least using DE algorithm than the traditional method. © 2017 IEEE. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007518
utb.identifier.obdid 43876772
utb.identifier.scopus 2-s2.0-85029375807
utb.source d-scopus
dc.date.accessioned 2017-10-16T14:43:41Z
dc.date.available 2017-10-16T14:43:41Z
utb.contributor.internalauthor Kunčar, Aleš
utb.contributor.internalauthor Sysel, Martin
utb.contributor.internalauthor Urbánek, Tomáš
utb.fulltext.affiliation Ales Kuncar, Martin Sysel and Tomas Urbanek Tomas Bata University in Zlin, Faculty of Applied Informatics, Namesti T.G.Masaryka 5555, 76001 Zlin, Czech Republic e-mail: kuncar@fai.utb.cz, sysel@fai.utb.cz, turbanek@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] R. Oboe, “Use of MEMS based accelerometers in hard disk drives,” in 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556), vol. 2. IEEE, pp. 1142–1147. [Online]. Available: http://ieeexplore.ieee.org/document/936863/ [2] D. Y. Abramovitch and G. Hsu, “Mitigating rotational disturbances on a disk drive with mismatched linear accelerometers,” in 2015 IEEE Conference on Control Applications (CCA). IEEE, sep 2015, pp. 1473–1478. [Online]. Available: http://ieeexplore.ieee.org/document/7320819/ [3] G. Nelson and R. Rajamani, “Accelerometer Based Acoustic Control: Enabling Auscultation on a Black Hawk Helicopter,” IEEE/ASME Transactions on Mechatronics, pp. 1–1, 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7553467/ [4] X. Wei, “Autonomous control system for the quadrotor unmanned aerial vehicle,” in 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, aug 2016, pp. 796–799. [Online]. Available: http://ieeexplore.ieee.org/document/7733984/ [5] C. Wu, Q. Mu, Z. Zhang, Y. Jin, Z. Wang, and G. Shi, “Indoor positioning system based on inertial MEMS sensors: Design and realization,” in 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, jun 2016, pp. 370–375. [Online]. Available: http://ieeexplore.ieee.org/document/7574852/ [6] Zhang Xinxi, Zhang Rong, Guo Meifeng, Cheng Gaofeng, Niu Shulai, and Li Jinglong, “The performance impact evaluation on bias of gyro and accelerometer for foot-mounted INS,” in 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). IEEE, 2015, pp. 1541–1546. [Online]. Available: http://ieeexplore.ieee.org/document/7494468/ [7] I. Frosio, F. Pedersini, and N. Borghese, “Autocalibration of MEMS Accelerometers,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 6, pp. 2034–2041, jun 2009. [Online]. Available: http://ieeexplore.ieee.org/document/4655611/ [8] S. Woo, J. Kim, J. Kim, and S. Kim, “Calibration of accelerometer using fuzzy inference system,” in Control, Automation and Systems (ICCAS), 2011 11th International Conference on, 2011, pp. 1448–1450. [9] N. Ammann, A. Derksen, and C. Heck, “A novel magnetometer-accelerometer calibration based on a least squares approach,” in 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, jun 2015, pp. 577–585. [Online]. Available: http://ieeexplore.ieee.org/document/7152338/ [10] F. Olsson, M. Kok, K. Halvorsen, and T. B. Schon, “Accelerometer calibration using sensor fusion with a gyroscope,” in 2016 IEEE Statistical Signal Processing Workshop (SSP). IEEE, jun 2016, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/document/7551836/ [11] Pengfei Guo, Haitao Qiu, Yunchun Yang, and Zhang Ren, “The soft iron and hard iron calibration method using extended kalman filter for attitude and heading reference system,” in 2008 IEEE/ION Position, Location and Navigation Symposium. IEEE, 2008, pp. 1167–1174. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4570003 [12] J. L. Crassidis, K.-L. Lai, and R. R. Harman, “Real-Time Attitude-Independent Three-Axis Magnetometer Calibration,” Journal of Guidance, Control, and Dynamics, vol. 28, no. 1, pp. 115–120, 2005. [13] M. Kok, J. Hol, T. Schon, F. Gustafsson, and H. Luinge, “Calibration of a magnetometer in combination with inertial sensors,” 2012 15th International Conference on Information Fusion (FUSION), pp. 787–793, 2012. [14] V. Renaudin, M. H. Afzal, and G. Lachapelle, “Complete Triaxis Magnetometer Calibration in the Magnetic Domain,” Journal of Sensors, vol. 2010, pp. 1–10, 2010. [Online]. Available: http://www.hindawi.com/journals/js/2010/967245/ [15] S. A. H. Tabatabaei, A. Gluhak, and R. Tafazolli, “A Fast Calibration Method for Triaxial Magnetometers,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 11, pp. 2929 – 2937, 2013. [16] Y. Liu, X. Li, X. Zhang, and Y. Feng, “Novel Calibration Algorithm for a Three-Axis Strapdown Magnetometer,” Sensors, vol. 14, no. 5, pp. 8485–8504, may 2014. [Online]. Available: http://www.mdpi.com/1424-8220/14/5/8485/ [17] R. Storn and K. Price, “Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces,” Tech. Rep., 1995. [18] R. Storn, “On the usage of differential evolution for function optimization,” in Proceedings of North American Fuzzy Information Processing. IEEE, 1996, pp. 519–523. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=534789 [19] STMicroelectronics, “Data brief: STEVAL-MKI124V1,” p. 4, 2013. [Online]. Available: http://www.st.com/web/en/resource/technical/document/data{\ }brief/DM00052740.pdf [20] “National Centers of Environmental Information,” 2016. [Online]. Available: http://www.ngdc.noaa.gov/geomag-web/?model=igrf{\#}igrfwmm
utb.fulltext.sponsorship This work was supported by Internal Grant Agency of Tomas Bata University in Zlin under the project No. IGA/FAI/2017/007.
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Namesti T.G. Masaryka 5555, Zlin, Czech Republic
Find Full text

Files in this item

Show simple item record