TBU Publications
Repository of TBU Publications

Biological properties of printable polyaniline and polyaniline–silver colloidal dispersions stabilized by gelatin

DSpace Repository

Show simple item record


dc.title Biological properties of printable polyaniline and polyaniline–silver colloidal dispersions stabilized by gelatin en
dc.contributor.author Bober, Patrycja
dc.contributor.author Humpolíček, Petr
dc.contributor.author Syrový, Tomáš
dc.contributor.author Capáková, Zdenka
dc.contributor.author Syrová, Lucie
dc.contributor.author Hromádková, Jiřina
dc.contributor.author Stejskal, Jaroslav
dc.relation.ispartof Synthetic Metals
dc.identifier.issn 0379-6779 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 232
dc.citation.spage 52
dc.citation.epage 59
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.synthmet.2017.07.013
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0379677917302023
dc.subject Conducting polymer en
dc.subject Colloidal dispersion en
dc.subject Hybrid composite en
dc.subject Polyaniline en
dc.subject Silver en
dc.subject Antibacterial activity en
dc.subject Cell adhesion en
dc.subject Flexography en
dc.subject Material printing en
dc.subject Conducting ink en
dc.description.abstract The oxidation of aniline with ammonium peroxydisulfate in the presence of gelatin yields spindle-like colloidal polyaniline particles having the particle size smaller than 200 nm. The similar oxidation of aniline with silver nitrate leads to hybrid composite polyaniline–silver nanoparticles with more complex morphology. The composites were characterized by transmission electron microscopy, dynamic light scattering and UV–vis spectroscopy. The cytoxicity of colloids has also been investigated. To test biointerface properties, the synthetized colloids were deposited to poly(ethylene terephthalate) foil using spiral bar coating and flexography printing technique. Prepared layers were tested for eukaryotic cell adhesion and proliferation, and antibacterial activity. The prepared surfaces do not only allow for eukaryotic cell adhesion and proliferation but also they possess significant antibacterial properties against Escherichia coli and Staphylococcus aureus, even without silver nanoparticles. This newly prepared surface has therefore high practical potential in variety of application in regenerative medicine or biosensing. © 2017 Elsevier B.V. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007277
utb.identifier.obdid 43876721
utb.identifier.scopus 2-s2.0-85026861556
utb.identifier.wok 000413380800008
utb.identifier.coden SYMED
utb.source j-scopus
dc.date.accessioned 2017-09-03T21:40:08Z
dc.date.available 2017-09-03T21:40:08Z
dc.description.sponsorship 14-05568P, GACR, Grantová Agentura České Republiky; 17-05095S, GACR, Grantová Agentura České Republiky
dc.description.sponsorship Czech Science Foundation [14-05568P, 17-05095S]; Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [LO1504]; Technology Agency of the Czech Republic [TE01020022]; European Fund of the Regional Development [CZ.1.05/4.1.00/11.0251]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Humpolíček, Petr
utb.contributor.internalauthor Capáková, Zdenka
utb.fulltext.affiliation P. Bober a,* , P. Humpolíček b,c , T. Syrový d,e , Z. Capáková b , L. Syrová d , J. Hromádková a , J. Stejskal a a Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic b Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic c Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic d University of Pardubice, Faculty of Chemical Technology, Department of Graphic Arts and Photophysics, 533 53 Pardubice, Czech Republic e University of Pardubice, Faculty of Chemical Technology, Center of Materials and Nanotechnology, 530 02 Pardubice, Czech Republic * Corresponding author. E-mail address: bober@imc.cas.cz (P. Bober).
utb.fulltext.dates Received 31 May 2017; Received in revised form 13 July 2017; Accepted 19 July 2017
utb.fulltext.references [1] A. Morrin, O. Ngamna, E. O'Malley, N. Kent, S.E. Moulton, G.G. Wallace, M.R. Smyth, A.J. Killard, The fabrication and characterization of inkjet-printed polyaniline nanoparticle films, Electrochim. Acta 53 (2008) 5092–5099. [2] P.J. Smith, A. Morrin, Reactive inkjet printing, J. Mater. Chem. 22 (2012) 10159–10965. [3] K. Crowley, M.R. Smyth, J. Killard, A. Morrin, Printing polyaniline for sensor applications, Chem. Pap. 67 (2013) 771–780. [4] T. Syrový, P. Kuberský, I. Sapurina, S. Pretl, P. Bober, L. Syrová, A. Hamáček, J. Stejskal, Gravure-printed ammonia sensor based on organic polyaniline colloids, Sens. Actuator B: Chem. 225 (2016) 510–516. [5] A.D. Vornbrock, D.V. Sung, H.K. Kang, R. Kitsomboonloha, V. Subramanian, Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors, Org. Electron. 11 (2010) 2037–2044. [6] C. Koidis, S. Logothetidis, S. Kassavetis, C. Kapnopoulos, P.G. Karagiannidis, D. Georgiou, A. Laskarakis, Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics, Solar Energy Mater. Solar Cells 112 (2013) 36–46. [7] M.M. Voigt, R.C.I. Mackenzie, C.P. Yau, P. Atienzar, J. Dane, P.E. Keivanidis, D.D.C. Bradley, J. Nelson, Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates, Solar Energy Mater. Solar Cells 95 (2011) 731–734. [8] P. Kopola, T. Aernouts, R. Sliz, S. Guillerez, M. Ylikunnari, D. Cheyns, M. Valimaki, M. Tuomikoski, J. Hast, G. Jabbour, R. Myllyla, A. Maaninen, Gravure printed flexible organic photovoltaic modules, Solar Energy Mater. Solar Cells 95 (2011) 1344–1347. [9] M. Hambsch, K. Reuter, H. Kempa, A.C. Hübler, Comparison of fully printed unipolar and complementary organic logic gates, Org. Electron. 13 (2012) 1989–1995. [10] T. Syrový, T. Kazda, L. Syrová, J. Vondrák, L. Kubáč, M. Sedlaříková, Cathode material for lithium ion accumulators prepared by screen printing for smart textile applications, J. Power Sources 309 (2016) 192–201. [11] P. Kuberský, T. Syrový, A. Hamáček, S. Nešpůrek, L. Syrová, Towards a fully printed electrochemical NO 2 sensor on a flexible substrate using ionic liquid based polymer electrolyte, Sens. Actuator B: Chem. 209 (2015) 1084–1090. [12] P. Kuberský, T. Syrový, A. Hamáček, S. Nešpůrek, J. Stejskal, Printed flexible gas sensors based on organic materials, Procedia Eng. 120 (2015) 614–617. [13] P. Kuberský, T. Syrový, A. Hamáček, S. Nešpůrek, L. Syrová, Fully printed electrochemical NO2 sensor, Procedia Eng. 87 (2014) 1043–1046. [14] F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques, Solar Energy Mater. Solar Cells 93 (2009) 394–412. [15] Y. Galagan, J.E.J.M. Rubingh, R. Andriessen, C.C. Fan, P.W.M. Blom, S.C. Veenstra, J.M. Kroon, ITO-free flexible organic solar cells with printed current collecting grids, Solar Energy Mater. Solar Cells 95 (2011) 1339–1343. [16] A.C. Hubler, M. Bellmann, G.C. Schmidt, S. Zimmermann, A. Gerlach, C. Haentjes, Fully mass printed loudspeakers on paper, Org. Electron. 13 (2012) 2290–2295. [17] M. Hösel, R.R. Søndergaard, M. Jørgensen, F.C. Krebs, Fast inline roll-to-roll printing for indium-tin-oxide-free polymer solar cells using automatic registration, Energy Technol. 1 (2013) 102–107. [18] J. Stejskal, I. Sapurina, M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation, Prog. Polym. Sci. 35 (2010) 1420–1481. [19] J. Stejskal, Colloidal dispersions of conducting polymers, J. Polym. Mater. 18 (2001) 225–258. [20] J. Stejskal, P. Kratochvíl, M. Helmstedt, Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers, Langmuir 12 (1996) 3389–3392. [21] F. Chen, P. Liu, Conducting polyaniline nanoparticles and their dispersion for waterborne corrosion protection coatings, ACS Appl. Mater. Interfaces 3 (2011) 2694–2702. [22] C. Dispenza, M.A. Sabatino, D. Chmielewska, C. LoPresti, G. Battaglia, Inherently fluorescent polyaniline nanoparticles in a dynamic landscape, React. Funct. Polym. 72 (2012) 185–197. [23] J.E. Yoo, J. Bae, High-performance fabric-based supercapacitors using water-dispersible polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid), Macromol. Res. 23 (2015) 749–754. [24] C. Sasso, N. Bruyant, D. Beneventi, J. Faure-Vincent, E. Zeno, M. Petit-Coni, D. Chaussy, M.N. Belgacem, Carboxymethylcellulose: a conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium, Synt. Met. 161 (2011) 397–403. [25] J. Stejskal, M. Špírková, A. Riede, M. Helmstedt, P. Mokreva, J. Prokeš, Polyaniline dispersions 8. The control of particle morphology, Polymer 40 (1999) 2487–2492. [26] S.P. Armes, M. Aldissi, S. Agnew, S. Gottesfeld, Aqueous colloidal dispersions of polyaniline formed by using poly(vinylpyridine)-based steric stabilizers, Langmuir 6 (1990) 1745–1749. [27] M. Mumtaz, Ch. Labrugère, E. Cloutet, H. Cramail, Synthesis of polyaniline nanoobjects using poly(vinyl alcohol)-, poly(ethylene oxide)-, and poly[(N-vinyl pyrrolidone)-co-(vinyl alcohol)]-based reactive stabilizers, Langmuir 25 (2009) 13569–13580. [28] M. Guizado-Rodriguez, M. Lopez-Tejeda, J. Escalante, J.A. Guerrero-Alvarez, M.E. Nicho, Photosensitive polyaniline colloidal particles prepared by enzymatic polymerization using the azopolymer DMA-co-AZAAm as stabilizer, Mater. Chem. Phys. 124 (2010) 389–394. [29] H. Kebiche, D. Debarnot, A. Merzouki, F. Poncin-Epaillard, N. Haddaoui, Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods, Anal. Chim. Acta 737 (2012) 64–71. [30] P. Bober, M. Trchová, J. Prokeš, M. Varga, J. Stejskal, Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids, Electrochim. Acta 56 (2011) 3580–3585. [31] P. Bober, J. Stejskal, M. Trchová, J. Prokeš, The preparation of conducting polyaniline-silver and poly(p-phenylenediamine)-silver nanocomposites in liquid and frozen reaction mixtures, J. Solid State Electrochem. 15 (2011) 2361–2368. [32] P. Bober, J. Stejskal, M. Trchová, J. Prokeš, In-situ prepared polyaniline-silver composites: single- and two-step strategies, Electrochim. Acta 122 (2014) 259–266. [33] W. Ptschelin, Emeraldine sols I: the chemical nature the production and the characteristics of the sol, Kolloid-Zeitschrift 70 (1935) 306–311; W. Ptschelin, The sols of emeraldin II: the mechanism of stabilising effects of gelatine in the formation of sols, Kolloid-Zeitschrift 76 (1936) 72–81; W. Ptschelin, On the mixtures of emeraldine III: the effect of acidity of solution in the oxidation of aniline on dispersal, colouration and rates of oxidation product, Kolloid-Zeitschrift 78 (1937) 88–95; W. Ptschelin, On the sols of emeraldine IV: the dependency of the stabilising capacity of gelatine on the acidity of the solution during the oxidation of aniline, Kolloid-Zeitschrift 78 (1937) 204–209. [34] M.C. Gómez-Guillén, B. Giménez, M.E. López-Caballero, M.P. Montero, Functional and bioactive properties of collagen and gelatin from alternative sources: a review, Food Hydrocoll. 25 (2011) 1813–1827. [35] P. Humpolicek, V. Kasparkova, P. Saha, J. Stejskal, Biocompatibility of polyaniline, Synth. Met. 162 (2012) 722–727. [36] P. Humpolíček, Z. Kuceková, V. Kašpárková, J. Pelková, M. Modic, I. Junkar, M. Trchová, P. Bober, J. Stejskal, M. Lehocký, Blood coagulation and platelet adhesion on polyaniline films, Colloids Surf. B: Biointerfaces 133 (2015) 278–285. [37] P. Bober, B.A. Zasonska, P. Humpolíček, Z. Kuceková, M. Varga, D. Horák, V. Babayan, N. Kazantseva, J. Prokeš, J. Stejskal, Polyaniline-maghemite based dispersion: electrical, magnetic properties and their cytotoxicity, Synth. Met. 214 (2016) 23–29. [38] S.H. Ku, S.H. Lee, C.B. Park, Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation, Biomaterials 33 (2012) 6098–6104. [39] J. Stejskal, P. Kratochvíl, M. Špírková, Accelerating effect of some cation radicals on the polymerization of aniline, Polymer 36 (1995) 4135–4140. [40] P. Bober, J. Stejskal, M. Trchová, J. Prokeš, I. Sapurina, Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine a new route to conducting composites, Macromolecules 43 (2010) 10406–10413. [41] S.B. Wang, G.Q. Shi, Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction, Mater. Chem. Phys. 102 (2007) 255–259. [42] X.M. Feng, H.P. Huang, Q.Q. Ye, J.J. Zhu, W.H. Hou, Ag/polypyrrole core-shell nanostructures: interface polymerization, characterization, and modification by gold nanoparticles, J. Phys. Chem. C 111 (2007) 8463–8468. [43] Z.Q. Shi, H.J. Wang, T.Y. Dai, Y. Lu, Room temperature synthesis of Ag/polypyrrole core-shell nanoparticles and hollow composite capsules, Synth. Met. 160 (2010) 2121–2127. [44] X.M. Feng, Synthesis of Ag/polypyrrole core-shell nanospheres by a seeding method, Chin. J. Chem. 28 (2010) 1359–1362. [45] Y.J. Jung, P. Govindaiah, S.W. Choi, I.W. Cheong, J.H. Kim, Morphology and conducting property of Ag/poly(pyrrole) composite nanoparticles: effect of polymeric stabilizers, Synth. Met. 161 (2011) 1991–1995. [46] M. Omastová, P. Bober, Z. Morávková, N. Peřinka, M. Kaplanová, T. Syrový, J. Hromádková, M. Trchová, J. Stejskal, Towards conducting inks: polypyrrole-silver colloids, Electrochim. Acta 122 (2014) 296–302. [47] S. Fujii, Y. Nishimura, A. Aichi, S. Matsuzawa, Y. Nakamura, K. Akamatsu, H. Nawafune, Facile one-step route to polyaniline-silver nanocomposite particles and their application as a colored particulate emulsifier, Synth. Met. 160 (2010) 1433–1437. [48] J. Stejskal, M. Trchová, Aniline oligomers versus polyaniline, Polym. Int. 61 (2012) 240–251. [49] J. Stejskal, P. Kratochvíl, N. Gospodinova, L. Terlemezyan, P. Mokreva, Polyaniline dispersions. 3. Influence of the polymerization conditions, Polym. Int. 32 (1993) 401–405. [50] J. Stejskal, P. Kratochvil, S.P. Armes, S.F. Lascelles, A. Riede, M. Helmstedt, J. Prokeš, I. Křivka, Polyaniline dispersions. 6. Stabilization by colloidal silica particles, Macromolecules 29 (1996) 6814–6819. [51] B. Vincent, J. Waterson, Colloidal dispersions of electrically-conducting, spherical polyaniline particles, J. Chem. Soc. Chem. Commu. 9 (1990) 683–684. [52] C. DeArmitt, S.P. Armes, Synthesis of novel polyaniline colloids using chemically grafted poly(N-vinylpyrrolidone)-based stabilizers, J. Colloid Interface Sci. 150 (1992) 134–142. [53] M.L. Digar, S.N. Bhattacharyya, B.M. Mandal, Dispersion polymerization of pyrrole using poly(vinyl methyl ether) as stabilizer, Polymer 35 (1994) 377–382. [54] D. Chattopadhyay, S. Banerjee, D. Chakravorthy, B.M. Mandal, Ethyl (hydroxyethyl) cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom, Langmuir 14 (1998) 1544–1547. [55] J.J. Wang, J. Jiang, B. Hu, S.H. Yu, Uniformly shaped poly(p-phenylenediamine) microparticles: shape-controlled synthesis and their potential application for the removal of lead ions from water, Adv. Funct. Mater. 18 (2008) 1105–1111. [56] I.Yu. Sapurina, J. Stejskal, Oxidation of aniline with strong and weak oxidants, Russ. J. Gen. Chem. 82 (2012) 261–281. [57] J.E. Albuquerque, L.H.C. Mattoso, R.M. Faria, J.G. Masters, A.G. MacDiarmid, Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy, Synth. Met. 146 (2004) 1–10. [58] A.P. Monkman, P. Adams, Structural characterisation of polyaniline free standing films, Synth. Met. 41 (1991) 891–896. [59] R. Desai, V. Mankad, S.K. Gupta, P.K. Jha, Size distribution of silver nanoparticles: UV-visible spectroscopic assessment, Nanosci. Nanotechnol. Lett. 4 (2012) 30–34. [60] Z. Kuceková, P. Humpolíček, V. Kašpárková, T. Perečko, M. Lehocký, I. Hauerlandová, P. Sáha, J. Stejskal, Colloidal polyaniline dispersions: antibacterial activity cytotoxicity and neutrophil oxidative burst, Colloid Surf. B: Biointerfaces 116 (2014) 411–417.
utb.fulltext.sponsorship The authors wish to thank the Czech Science Foundation (14-05568P and 17-05095S), the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504) and the Technology Agency of the Czech Republic (TE01020022) for the financial support. Project No. CZ.1.05/4.1.00/11.0251 “Center of Materials and Nanotechnologies” co-financed by the European Fund of the Regional Development and the state budget of the Czech Republic is gratefully acknowledged.
utb.wos.affiliation [Bober, P.; Hromadkova, J.; Stejskal, J.] Chem Acad Sci Czech Republ, Inst Macromol, Prague 16206 6, Czech Republic; [Humpolicek, P.; Capakova, Z.] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin 76001, Czech Republic; [Humpolicek, P.] Tomas Bata Univ Zlin, Polymer Ctr, Fac Technol, Zlin 76001, Czech Republic; [Syrovy, T.; Syrova, L.] Univ Pardubice, Fac Chem Technol, Dept Graph Arts & Photophys, Pardubice 53353, Czech Republic; [Syrovy, T.] Univ Pardubice, Fac Chem Technol, Ctr Mat & Nanotechnol, Pardubice 53002, Czech Republic
utb.scopus.affiliation Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic, Prague 6, Czech Republic; Centre of Polymer Systems, Tomas Bata University in Zlin, Zlin, Czech Republic; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic; University of Pardubice, Faculty of Chemical Technology, Department of Graphic Arts and Photophysics, Pardubice, Czech Republic; University of Pardubice, Faculty of Chemical Technology, Center of Materials and Nanotechnology, Pardubice, Czech Republic
Find Full text

Files in this item

Show simple item record