TBU Publications
Repository of TBU Publications

Robust stability of thermal control systems with uncertain parameters: The graphical analysis examples

DSpace Repository

Show simple item record


dc.title Robust stability of thermal control systems with uncertain parameters: The graphical analysis examples en
dc.contributor.author Matušů, Radek
dc.contributor.author Pekař, Libor
dc.relation.ispartof Applied Thermal Engineering
dc.identifier.issn 1359-4311 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 125
dc.citation.spage 1157
dc.citation.epage 1163
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.applthermaleng.2017.07.089
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1359431117311596
dc.subject Robust stability analysis en
dc.subject Thermal systems en
dc.subject Parametric uncertainty en
dc.subject Time delay en
dc.subject Fractional order systems en
dc.description.abstract This paper is intended to present the investigation of robust stability for integer order or fractional order feedback control loops affected by parametric uncertainty and time-delay(s) with special emphasis on the thermal control systems. The applied graphical method is based on the numerical calculations of the value sets and the zero exclusion condition. Three robust stability examples inspired by control of the real-world thermal processes are used for demonstration of the technique applicability. Namely, the work deals with the analysis of a shell-and-tube heat exchanger which was identified as the (integer order) time-delay model with parametric uncertainty, a heat transfer process modeled as the fractional order time-delay plant with parametric uncertainty, and a heating–cooling system with a heat exchanger described by the anisochronic model with internal delays and parametric uncertainty. © 2017 Elsevier Ltd en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007276
utb.identifier.obdid 43876966
utb.identifier.scopus 2-s2.0-85021641936
utb.identifier.wok 000410011200105
utb.identifier.coden ATENF
utb.source j-scopus
dc.date.accessioned 2017-09-03T21:40:08Z
dc.date.available 2017-09-03T21:40:08Z
dc.description.sponsorship European Regional Development Fund under the project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]
utb.ou CEBIA-Tech
utb.contributor.internalauthor Matušů, Radek
utb.contributor.internalauthor Pekař, Libor
utb.fulltext.affiliation Radek Matušů⇑ , Libor Pekař Centre for Security, Information and Advanced Technologies (CEBIA–Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic ⇑ Corresponding author. E-mail addresses: rmatusu@fai.utb.cz (R. Matušů), pekar@fai.utb.cz (L. Pekař).
utb.fulltext.dates Received 20 February 2017 Revised 9 July 2017 Accepted 13 July 2017 Available online 15 July 2017
utb.fulltext.references [1] Y. Jaluria, Design and Optimization of Thermal Systems, CRC Press, Boca Raton, FL, USA, 2007. [2] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer Science + Business Media, New York, USA, 1999. [3] H.-D. Chiang, L.F.C. Alberto, Stability Regions of Nonlinear Dynamical Systems: Theory, Estimation, and Applications, Cambridge University Press, Cambridge, UK, 2015. [4] R. Sipahi, S.-I. Niculescu, C.T. Abdallah, W. Michiels, K. Gu, Stability and stabilization of systems with time delay: limitations and opportunities, IEEE Control Syst. Mag. 31 (1) (2011) 38–65. [5] W. Michiels, S.-I. Niculescu, Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach, SIAM, 2014. [6] A. Seuret, F. Gouaisbaut, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Syst. Control Lett. 81 (2015) 1–7. [7] M.J. Park, O.M. Kwon, J.H. Park, S.M. Lee, E.J. Cha, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica 55 (2015) 204–208. [8] I. Podlubný, Fractional Differential Equations, Academic Press, San Diego, CA, USA, 1999. [9] I. Petráš, Stability of fractional-order systems with rational orders: a survey, Fract. Calculus Appl. Anal. 12 (3) (2009) 269–298. [10] Y. Chen, I. Petráš, D. Xue, Fractional Order Control – A Tutorial, in: Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 2009. [11] R.E. Gutiérrez, J.M. Rosário, J.A.T. Machado, Fractional order calculus: basic concepts and engineering applications, Math. Prob. Eng. 2010 (2010), 19 p. [12] W. Chen, H. Dai, Y. Song, Z. Zhang, Convex Lyapunov functions for stability analysis of fractional order systems, IET Control Theory Appl. 11 (7) (2017) 1070–1074. [13] S. Liu, W. Jiang, X. Li, X.-F. Zhou, Lyapunov stability analysis of fractional nonlinear systems, Appl. Math. Lett. 51 (2016) 13–19. [14] S. Huang, R. Zhang, D. Chen, Stability of nonlinear fractional-order time varying systems, J. Comput. Nonlin. Dynam. 11 (3) (2015), 9 p. [15] M. Busłowicz, Stability conditions for linear continuous-time fractional-order state-delayed systems, Bullet. Polish Acad. Sci.: Techn. Sci. 64 (1) (2016) 3–7. [16] B.R. Barmish, New Tools for Robustness of Linear Systems, Macmillan, New York, USA, 1994. [17] S.P. Bhattacharyya, H. Chapellat, L.H. Keel, Robust control: The parametric approach, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1995. [18] S.P. Bhattacharyya, A. Datta, L.H. Keel, Linear Control Theory: Structure, Robustness, and Optimization, CRC Press, Taylor & Francis Group, USA, 2009. [19] R. Matušů, R. Prokop, Graphical analysis of robust stability for systems with parametric uncertainty: an overview, Trans. Inst. Measure. Control 33 (2) (2011) 274–290. [20] R. Matušů, R. Prokop, Robust stability analysis for systems with real parametric uncertainty: implementation of graphical tests in Matlab, Int. J. Circ. Syst. Signal Process. 7 (1) (2013) 26–33. [21] S.P. Bhattacharyya, Robust control under parametric uncertainty: An overview and recent results, Annual Reviews in Control, 2017, in press – Corrected Proof. https://doi.org/10.1016/j.arcontrol.2017.05.001. [22] M. Deng, Z. Iwai, I. Mizumoto, Robust parallel compensator design for output feedback stabilization of plants with structured uncertainty, Syst. Control Lett. 36 (3) (1999) 193–198. [23] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, John Wiley and Sons, Chichester, UK, 2005. [24] R. Matušů, R. Prokop, L. Pekař, Parametric and unstructured approach to uncertainty modelling and robust stability analysis, Int. J. of Math. Models Methods Appl. Sci. 5 (6) (2011) 1011–1018. [25] R. Matušů, B. Şenol, C. Yeroğlu, Modelling and robust stability analysis of systems with unstructured multiplicative uncertainty, in: Recent Advances in Systems – Proceedings of the 19th International Conference on Systems, Zakynthos, Greece, 2015. [26] Z.-Y. Dong, S.-A. Liu, C. Liu, J.-L. Liu, L. Feng, Modelling and robust control of an unmanned coaxial rotor helicopter with unstructured uncertainties, Adv. Mech. Eng. 9 (1) (2017) 1–14. [27] V.L. Kharitonov, Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differentsial’nye Uravneniya 14 (1978) 2086–2088. [28] B.R. Barmish, Invariance of the strict Hurwitz property for polynomials with perturbed coefficients. In Proceedings of the IEEE Conference on Decision and Control, San Antonio, Texas, USA, 1983 (See also IEEE Transactions on Automatic Control, 1984, Vol. 29, No. 10, pp. 935-936). [29] V. Kharitonov, A. Zhabko, Robust stability of time-delay systems, IEEE Trans. Autom. Control 39 (12) (1994) 2388–2397. [30] Z. Wang, H. Hu, T. Küpper, Robust Hurwitz stability test for linear systems with uncertain commensurate time delays, IEEE Trans. Autom. Control 49 (8) (2004) 1389–1393. [31] H. Shinozaki, T. Mori, Robust stability analysis of linear time-delay systems by Lambert W function: some extreme point results, Automatica 42 (10) (2006) 1791–1799. [32] J. Chen, S.-I. Niculescu, P. Fu, Robust stability of quasi-polynomials: frequency-sweeping conditions and vertex tests, IEEE Trans. Autom. Control 53 (5) (2008) 1219–1234. [33] B. Şenol, A. Ates ß , B.B. Alagoz, C. Yeroğlu, A numerical investigation for robust stability of fractional-order uncertain systems, ISA Trans. 53 (2) (2014) 189–198. [34] C. C. Yeroğlu, B. Şenol, Investigation of robust stability of fractional order multilinear affine systems: 2q-convex parpolygon approach, Syst. Control Lett. 62 (10) (2013) 845–855. [35] J.-G. Lu, Y. Chen, Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties, Fract. Calculus Appl. Anal. 16 (1) (2013) 142–157. [36] B. Şenol, C. Yeroğlu, Frequency boundary of fractional order systems with nonlinear uncertainties, J. Franklin Inst. 350 (7) (2013) 1908–1925. [37] C. Li, J. Wang, Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 < a < 1 case, J. Franklin Inst. 349 (7) (2012) 2406–2419. [38] B. Şenol, C. Yeroğlu, Robust Stability Analysis of Fractional Order Uncertain Polynomials, in: Proceedings of the 5th IFAC Workshop on Fractional Differentiation and its Applications, Nanjing, China, 2012. [39] B. Şenol, C. Yeroğlu, Computation of the Value Set of Fractional Order Uncertain Polynomials: A 2q Convex Parpolygonal Approach, in: Proceedings of the 2012 IEEE International Conference on Control Applications, Dubrovnik, Croatia, 2012. [40] C. Yeroğlu, N. Tan, Classical controller design techniques for fractional order case, ISA Trans. 50 (3) (2011) 461–472. [41] Z. Liao, C. Peng, W. Li, Y. Wang, Robust stability analysis for a class of fractional order systems with uncertain parameters, J. Franklin Inst. 348 (6) (2011) 1101–1113. [42] K.A. Moornani, M. Haeri, Robust stability testing function and Kharitonov-like theorem for fractional order interval systems, IET Control Theory Appl. 4 (10) (2010) 2097–2108. [43] N. Tan, Ö.F. Özgüven, M.M. Özyetkin, Robust stability analysis of fractional order interval polynomials, ISA Trans. 48 (2) (2009) 166–172. [44] C. Yeroğlu, M.M. Özyetkin, N. Tan, Frequency response computation of fractional order interval transfer functions, Int. J. Control Autom. Syst. 8 (5) (2010) 1009–1017. [45] L. Chen, R. Wu, Y. He, L. Yin, Robust stability and stabilization of fractional- order linear systems with polytopic uncertainties, Appl. Math. Comput. 257 (2015) 274–284. [46] M. Busłowicz, A. Ruszewski, Robust stability check of fractional discrete-time linear systems with interval uncertainties, in: Advances in Modelling and Control of Non-integer-Order Systems, Lecture Notes in Electrical Engineering, 320, Springer, Cham, Switzerland, 2015. [47] M. Busłowicz, Robust stability of a class of uncertain fractional order linear systems with pure delay, Arch. Control Sci. 25 (2) (2015) 177–187. [48] R. Matušů, R. Prokop, Robust stability of fractional order time-delay control systems: a graphical approach, Math. Prob. Eng. 2015 (2015), 9 p. [49] A. Vašičkaninová, M. Bakošová, Robust control of heat exchangers, Chem. Eng. Trans. 29 (2012) 1363–1368. [50] A. Vašičkaninová, M. Bakošová, Robust controller design for a heat exchanger using H 2 , H 1 , H 2 /H 1 , and m-synthesis approaches, Acta Chimica Slovaca 9 (2) (2016) 184–193. [51] M. Bakošová, J. Oravec, Robust model predictive control for heat exchanger network, Appl. Therm. Eng. 73 (1) (2014) 924–930. [52] H. Khayyam, Adaptive intelligent control of vehicle air conditioning system, Appl. Therm. Eng. 51 (1–2) (2013) 1154–1161. [53] A. Vašičkaninová, M. Bakošová, Control of a heat exchanger using neural network predictive controller combined with auxiliary fuzzy controller, Appl. Therm. Eng. 89 (2015) 1046–1053. [54] J.-D. Gabano, T. Poinot, Fractional modelling and identification of thermal systems, Signal Process. 91 (3) (2011) 531–541. [55] R. Caponetto, F. Sapuppo, V. Tomasello, G. Maione, P. Lino, Fractional-Order Identification and Control of Heating Processes with Non-Continuous Materials, Entropy 18 (11) (2016), 11 p. [56] M. Macias, D. Sierociuk, Fractional order calculus for modeling and fractional PID control of the heating process, in: Proceedings of the 13th International Carpathian Control Conference, High Tatras, Podbanské, Slovakia, 2012. [57] D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petráš, I. Podlubný, T. Škovránek, Modelling heat transfer in heterogeneous media using fractional calculus, Philos. Trans. Roy. Soc. A 371 (1990) (2013), 10 p. [58] L. Pekař, R. Prokop, Algebraic robust control of a closed circuit heating-cooling system with a heat exchanger and internal loop delays, Appl. Therm. Eng. 113 (2017) 1464–1474. [59] R. Matušů, B. Şenol, L. Pekař, Robust stability of fractional order polynomials with complicated uncertainty structure, PLOS ONE 12 (6) (2017), 13 p. [60] L. Pekař, R. Prokop, R. Matušů, A stability test for control systems with delays based on the Nyquist criterion, Int. J. Math. Models Methods Appl. Sci. 5 (7) (2011) 1213–1224. [61] M. Busłowicz, Stability of linear continuous-time fractional order systems with delays of the retarded type, Bullet. Polish Acad. Sci.: Techn. Sci. 56 (4) (2008) 319–324. [62] L. Pekař, Control of Time Delay Systems – An Algebraic Approach, English Doctoral Thesis, Faculty of Applied Informatics, Tomas Bata University in Zlín, 2013. [63] P. Zítek, J. Hlava, Anisochronic internal model control of time-delay systems, Control Eng. Pract. 9 (5) (2001) 501–516. [64] P. Dostál, F. Gazdoš, V. Bobál, Design of Controllers for Time Delay Systems: Integrating and Unstable Systems, in: Time-Delay Systems (Ed.), InTech, Croatia, Rijeka, 2011, pp. 113–126. [65] R. Matušů, Robust stabilization of interval plants by means of two feedback controllers, Int. J. Circ. Syst. Signal Process. 9 (2015) 427–434.
utb.fulltext.sponsorship This work was supported by the European Regional Development Fund under the project CEBIA-Tech Instrumentation No. CZ.1.05/2.1.00/19.0376 and by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014).
utb.scopus.affiliation Centre for Security, Information and Advanced Technologies (CEBIA–Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, Czech Republic
Find Full text

Files in this item

Show simple item record