TBU Publications
Repository of TBU Publications

Verification of robust properties of digital control closed-loop systems

DSpace Repository

Show simple item record


dc.title Verification of robust properties of digital control closed-loop systems en
dc.contributor.author Bobál, Vladimír
dc.contributor.author Spaček, Ľuboš
dc.contributor.author Hornák, Peter
dc.relation.ispartof Proceedings - 31st European Conference on Modelling and Simulation, ECMS 2017
dc.identifier.isbn 9780993244049
dc.date.issued 2017
dc.citation.spage 348
dc.citation.epage 354
dc.event.title 31st European Conference on Modelling and Simulation, ECMS 2017
dc.event.location Budapest
utb.event.state-en Hungary
utb.event.state-cs Maďarsko
dc.event.sdate 2017-05-23
dc.event.edate 2017-05-26
dc.type conferenceObject
dc.language.iso en
dc.publisher European Council for Modelling and Simulation
dc.identifier.doi 10.7148/2017-0348
dc.relation.uri http://www.scs-europe.net/dlib/2017/2017-0348.htm
dc.relation.uri http://www.scs-europe.net/dlib/2017/ecms2017acceptedpapers/0348-mct_ECMS2017_0018.pdf
dc.subject Digital Control en
dc.subject Polynomial Methods en
dc.subject Robustness en
dc.subject Robustness Margins en
dc.subject LQ Method en
dc.subject Simulation of Control Loop Systems en
dc.description.abstract Robustness is specific property of closed-loop systems when the designed controller guarantees control not only for one nominal controlled system but also for all predefined class of systems (perturbed models). The robust theory is mainly exploited for design of the continuous-time systems. This paper deals with an experimental simulation investigation of robust properties of digital control closed-loop systems. Minimization of the Linear Quadratic (LQ) criterion was used for the design of control algorithm. Polynomial approach is based on the structure of the controller with two degrees of freedom (2DOF). Four types of process models (stable, non-minimum phase, unstable and integrating) were used for controller design. The Nyquist plot based characteristics of the open-loop transfer function (gain margin, phase margin and modulus margin) served as robustness indicators. The influence of change of process gain was chosen as a parametric uncertainty. The experimental results demonstrated that a robustness of examined digital control closed-loop systems could be improved by addition of user-defined poles (UDP). © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors). en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007250
utb.identifier.obdid 43876911
utb.identifier.scopus 2-s2.0-85021844060
utb.identifier.wok 000404420000052
utb.source d-scopus
dc.date.accessioned 2017-09-03T21:40:05Z
dc.date.available 2017-09-03T21:40:05Z
utb.contributor.internalauthor Bobál, Vladimír
utb.contributor.internalauthor Spaček, Ľuboš
utb.contributor.internalauthor Hornák, Peter
utb.fulltext.affiliation Vladimír Bobál, Ľuboš Spaček and Peter Hornák Tomas Bata University in Zlín Faculty of Applied Informatics Nad Stráněmi 4511 760 05 Zlín Czech Republic E-mail: bobal@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.references Bobál, V., Böhm, J., Fessl, J. and J. Macháček. 2005. Digital Self-tuning Controllers: Algorithms, Implementation and Applications. Springer-Verlag, London. Doyle, J., Francis, B. and A. Tannenbaum. 1990. Feedback Control Theory. 1990. Macmillan Publishing. Horowitz, I., M. 1963. Synthesis of Fedback Systems. Academia Press. Kučera, V. 1991. Analysis and Design of Discrete Linear Control Systems. Prentice-Hall, Englewood Cliffs, NJ. Kučera, V. 1993. “Diophantine equations in control – a survey”. Automatica 29, 1361-1375. Kučera, V. 1991. Analysis and Design of Discrete Linear Control Systems. Prentice-Hall, Englewood Cliffs, NJ. Kwakernaak, H. 1993. „Robust control and H∞ optimization – Tutorial paper”. Automatica 29, 255-273. Landau, I. D. 1998. “The R-S-T digital controller design and applications”. Control Engineering Practice 7,155-165. Landau, I. D. 1999. “From robust control to adaptive control,” Control Engineering Practice 7, 1113-1124. Landau, I. D. and G. Zito. 2006. Digital Control Systems. Springer-Verlag, London. Landau, I. D., Lozano, R., M’Saad, M. and A. Karimi. 2011. Adaptive Control, Algorithms. Analysis and Applications. Springer-Verlag, London. Matušů, R. 2014. “Robust stability analysis of discrete-time systems with parametric uncertainty,” International Journal of Mathematical Models and Methods 8, 95-102. Matušů, R. and R. Prokop. 2011. “Graphical analysis of robust stability for systems with parametric uncertainty: an overview,” Transactions of the Institute of Measurement and Control 33, 274-290. Messner, B. and D. Tilbury. 2011. Control Tutorials for MATLAB and Simulink. MathWorks, Natick, MA, USA. Morari, M. and E. Zafiriou. 1989. Robust Process Control. Prentice-Hall, Englewood Cliffs, NJ. Sánches-Peňa, R. S. and M. Szainer. 1998. Robust Systems. Theory and Application. J. Willey & Sons, New York. Šebek, M. Polynomial Toolbox for MATLAB, Version 3.0. 2014. PolyX, Prague, Czech Republic. Šebek, M. and M. Hromčík. 2007. “Polynomial design methods,” International Journal of Robust and Nonlinear Control 17, 679-681. Skogestad, S. and I. Postletwaithe. 2005. Multivariable Feedback Control – Analyses and Design. J. Wiley & Sons, Chichester.
utb.fulltext.sponsorship -
utb.scopus.affiliation Tomas Bata University in Zlín, Faculty of Applied Informatics, Nad Stráněmi 4511, Zlín, Czech Republic
Find Full text

Files in this item

Show simple item record