TBU Publications
Repository of TBU Publications

Experimental measurements used to reduce emergency situations of environmental continuous transport

DSpace Repository

Show simple item record

dc.title Experimental measurements used to reduce emergency situations of environmental continuous transport en
dc.contributor.author Strohmandl, Jan
dc.contributor.author Cempírek, Miroslav
dc.relation.ispartof Proceedings of the 20th International Scientific Conference Transport Means 2016
dc.identifier.issn 1822-296X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2016
dc.citation.spage 835
dc.citation.epage 839
dc.event.title 20th International Scientific Conference on Transport Means
dc.event.location Juodkrantė
utb.event.state-en Lithuania
utb.event.state-cs Litva
dc.event.sdate 2016-10-05
dc.event.edate 2016-10-07
dc.type conferenceObject
dc.language.iso en
dc.publisher Kaunas University Technology Press
dc.subject continuous transport en
dc.subject experimental measurements en
dc.subject contact forces en
dc.subject pipe conveyor en
dc.subject emergency situation en
dc.description.abstract An emergency situation in a continuous transport system is an undesirable phenomenon during which the continuity of production or technological processes is seriously endangered. This situation can be brought about by various factors. In technological equipment of environmental continuous belt conveyor systems and pipe conveyors various adverse critical conditions may arise, which may result in the creation of an emergency situation. In particular, both conveyor and supporting rollers being the most significant components of the conveyor belt can substantially contribute to the onset of an emergency situation. Any damage to them can lead to a reduction or a complete standstill of the continuous transport process, which impedes upon the subsequent production operations. This contribution describes the possibility of the measurement and assessment of normal contact forces, which are applied by the conveyor belt to the supporting rollers on the hexagonal idler roller support of the pipe conveyors. This allows an early prediction of the critical condition and thus any developing emergency situation can be forestalled. en
utb.faculty Faculty of Logistics and Crisis Management
dc.identifier.uri http://hdl.handle.net/10563/1007203
utb.identifier.obdid 43876894
utb.identifier.scopus 2-s2.0-85045379101
utb.identifier.wok 000402539900160
utb.source d-wok
dc.date.accessioned 2017-09-03T21:40:00Z
dc.date.available 2017-09-03T21:40:00Z
utb.contributor.internalauthor Strohmandl, Jan
utb.fulltext.affiliation J. Strohmandl*, M. Cempírek** *Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic, E-mail: strohmandl@flkr.utb.cz **University of Defence, Kounicova 156/65, 662 10 Brno, Czech Republic, E-mail: miroslav.cempirek@unob.cz
utb.fulltext.dates -
utb.fulltext.references 1. China (Yangzhou) Material Handling Tech-Engineering Ltd., Yangzhou, (n.d.). http://www.china-cmh.com/index.aspx?menuid=23&type=productinfo&lanmuid=46&infoid=99&language=en. 2. Fedorko G., Molnar V., Marasova D., Grincova A., Dovica M., Zivcak J., et al. Failure analysis of belt conveyor damage caused by the falling material. Part I: Experimental measurements and regression models, Eng. Fail. Anal. 36 (2014) 30–38. doi:10.1016/j.engfailanal.2013.09.017. 3. Fedorko G., Molnar V., Marasova D., Grincova A., Dovica M., Zivcak J., et al. Failure analysis of belt conveyor damage caused by the falling material. Part II: Application of computer metrotomography, Eng. Fail. Anal. 34 (2013) 431–442. doi:10.1016/j.engfailanal.2013.09.016. 4. Fedorko G., Molnar V., Grincova A., Dovica M., Toth T., Husakova N., et al. Failure analysis of irreversible changes in the construction of rubber–textile conveyor belt damaged by sharp-edge material impact, Eng. Fail. Anal. 39 (2014) 135–148. doi:10.1016/j.engfailanal.2014.01.022. 5. Fedorko G., Molnár V., Živčák J., Dovica M., Husáková N. Failure analysis of textile rubber conveyor belt damaged by dynamic wear, Eng. Fail. Anal. 28 (2013) 103–114. http://www.sciencedirect.com/science/article/pii/S1350630712002221. 6. Fedorko G., Ivančo V., Molnár V., Husáková N., Simulation of Interaction of a Pipe Conveyor Belt with Moulding Rolls, Procedia Eng. 48 (2012) 129–134. doi:10.1016/j.proeng.2012.09.495. 7. Molnár V., Boroška J., Dečmanová J. Mechanical properties of steel rope wires -– quality test assurance, Acta Montan. Slovaca. 15 (2010) 23–30. http://actamont.tuke.sk/pdf/2010/s1/5molnar.pdf. 8. Molnár V., Fedorko G., Stehlíková B., Michalik P. Statistical Comparison of Rope Strands by ANOVA Test and Kruskal Walis Test, Tech. Technol. Educ. Manag. 6 (2011) 1121–1126. 9. Peterka P., Krešák J., Kropuch S., Fedorko G., Molnar V., Vojtko M. Failure analysis of hoisting steel wire rope, Eng. Fail. Anal. 45 (2014) 96–105. doi:10.1016/j.engfailanal.2014.06.005. 10. Fedorko G., Stanova E., Molnar V., Husakova N., Kmet S. Computer modelling and finite element analysis of spiral triangular strands, Adv. Eng. Softw. 73 (2014) 11–21. doi:10.1016/j.advengsoft.2014.02.004. 11. Stanova E., Fedorko G., Kmet S., Molnar V., Fabian M., Finite element analysis of spiral strands with different shapes subjected to axial loads, Adv. Eng. Softw. 83 (2015) 45–58. doi:10.1016/j.advengsoft.2015.01.004. 12. Hotte S., Overmeyer L., Wennekamp T. Research on the Form Force Behaviour of a Pipe Conveyor in Different Curve Radii Research on the Form Force Behaviour of Pipe Conveyors in Different, Bulk Solids Handl. (2011). 13. Conveyor Dynamics, Inc., Bellingham, Washington, USA, (n.d.). http://www.conveyor-dynamics.com/about/pipe.htm. 14. Hinterholzer S., Kessler F., Grabner K. Research on a Pipe Conveyor with a Completely New Belt Guidance, (n.d.). http://www.ckit.co.za/right-index/tech-focus/belt-guide/new-belt-guidance.htm. 15. Molnár V., Fedorko G., Stehlíková B., Michalik P., Kopas M. Mathematical models for indirect measurement of contact forces in hexagonal idler housing of pipe conveyor, Meas. J. Int. Meas. Confed. 47 (2014) 794–803. doi:10.1016/j.measurement.2013.10.012. 16. Molnár V., Fedorko G., Stehlíková B., Kudelás Ľ., Husáková N. Statistical approach for evaluation of pipe conveyor’s belt contact forces on guide idlers, Measurement. 46 (2013) 3127–3135. doi:10.1016/j.measurement.2013.06.019. 17. Michalik P., Zajac J. Using of computer integrated system for static tests of pipe conveyer belts, in: 13 th Int. Carpathian Control Conf. (ICCC), 2012, IEEE, High Tatras, 2012: pp. 480–485. doi:10.1109/CarpathianCC.2012.6228691. 18. Neradilova H., Laskovsky V. The use of ecological systems for transporting of raw materials in the Czech republic, in: 16 th International Multidisciplinary Scientific GeoConference (SGEM), 2016, SGEM, Albena Resort, 2012: pp. 1-7.
utb.fulltext.sponsorship -
utb.wos.affiliation [Strohmandl, J.] Tomas Bata Univ Zlin, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Cempirek, M.] Univ Def, Kounicova 156-65, Brno 66210, Czech Republic
utb.fulltext.projects -
Find Full text

Files in this item

Show simple item record