TBU Publications
Repository of TBU Publications

MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes

DSpace Repository

Show simple item record

dc.title MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes en
dc.contributor.author He, Ying
dc.contributor.author Du, Shuangshuang
dc.contributor.author Li, Huailong
dc.contributor.author Cheng, Qilin
dc.contributor.author Pavlínek, Vladimír
dc.contributor.author Sáha, Petr
dc.relation.ispartof Journal of Solid State Electrochemistry
dc.identifier.issn 1432-8488 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2016
utb.relation.volume 20
utb.relation.issue 5
dc.citation.spage 1459
dc.citation.epage 1467
dc.type article
dc.language.iso en
dc.publisher Springer
dc.identifier.doi 10.1007/s10008-016-3162-2
dc.relation.uri https://link.springer.com/article/10.1007/s10008-016-3162-2
dc.subject Carbon cloth en
dc.subject Manganese dioxide en
dc.subject Polyaniline en
dc.subject Supercapacitor en
dc.description.abstract A facile two-step strategy is developed for synthesis of MnO2/polyaniline (PANI) hybrid nanostructures on carbon cloth (CC). Vertically aligned PANI nanofiber arrays were firstly grown on CC via chemical oxidative polymerization, and MnO2 nanoparticles were then deposited on the surface of PANI nanofibers via redox reaction between PANI and KMnO4 solution. Structural and morphological characterizations of composites were investigated by FESEM, Raman, and XPS techniques, respectively. Electrochemical performance of the composites as supercapacitor electrode materials was evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. The results demonstrate that the morphology and areal specific capacitance of the MnO2/PANI/CC composite vary with MnO2 deposition time. The ternary composite with 6 h MnO2 deposition exhibits a high areal capacitance of 1.56 F cm−2 at the scan rate of 10 mV s−1 and 0.99 F cm−2 at a current density of 2 mA cm−2 and still maintains 88.1 % of the original capacitance after 1000 charge-discharge cycles at a large current density of 10 mA cm−2.The excellent performance is due to the synergistic effect from the combination of two active pseudo materials and 3D conductive CC backbone. This study further highlights the importance of optimal design and control of material structures in supercapacitor applications. © 2016, Springer-Verlag Berlin Heidelberg. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1006383
utb.identifier.obdid 43875073
utb.identifier.scopus 2-s2.0-84959128880
utb.identifier.wok 000374840400027
utb.source j-scopus
dc.date.accessioned 2016-07-26T14:58:23Z
dc.date.available 2016-07-26T14:58:23Z
dc.description.sponsorship National Natural Science Foundation of China [21371057]; Basic Research Program of Shanghai [13NM1400801]; International Cooperation Project of Shanghai Municipal Science and Technology Committee [15520721100]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor He, Ying
utb.contributor.internalauthor Cheng, Qilin
utb.contributor.internalauthor Pavlínek, Vladimír
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation R. N. Salek, M. Černíková, S. Maděrová, L. Lapčík, F. Buňka1 1 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China 2 Centre of Polymer Systems, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic
Find Full text

Files in this item

Show simple item record