TBU Publications
Repository of TBU Publications

Few-layer MoS2 nanosheets incorporated into hierarchical porous carbon for lithium-ion batteries

DSpace Repository

Show simple item record


dc.title Few-layer MoS2 nanosheets incorporated into hierarchical porous carbon for lithium-ion batteries en
dc.contributor.author Wang, Haiyan
dc.contributor.author Ren, Dayong
dc.contributor.author Zhu, Zhengju
dc.contributor.author Sáha, Petr
dc.contributor.author Jiang, Hao
dc.contributor.author Li, Chunzhong
dc.relation.ispartof Chemical Engineering Journal
dc.identifier.issn 1385-8947 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2016
utb.relation.volume 288
dc.citation.spage 179
dc.citation.epage 184
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.cej.2015.11.105
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1385894715016575
dc.subject Biomass en
dc.subject Few-layer MoS2 en
dc.subject Hierarchical porous carbon en
dc.subject Lithium ion batteries en
dc.description.abstract In order to overcome the serious stacking and poor conductivity of graphene-like MoS2 nanosheets, we have developed the synthesis of few-layer MoS2 nanosheets incorporated into biomass-derived hierarchical porous carbon frameworks (labeled as MoS2/C hybrids) utilizing the strong water-absorbing power of auricularia from its inherent rich porous structure. The as-obtained MoS2/C hybrids, when applied as lithium-ion batteries anode materials, show an improved specific capacity of 707.4 mA h g-1 compared with the commercial MoS2 nanosheets (580.2 mA h g-1) and the corresponding hierarchical porous carbon (215.5 mA h g-1). More meaningfully, they possess an impressive cycle life, almost without capacity fading even after 500 cycles at 1600 mA g-1. The intriguing performance is mainly attributed to the well-dispersion of few-layer MoS2 nanosheets into hierarchical porous carbon. We believe this work will provide a new insight on the design and synthesis of novel carbon-based electrode materials for potential applications in lithium-ion batteries and other clean energy devices. © 2015 Elsevier B.V. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1005779
utb.identifier.obdid 43874957
utb.identifier.scopus 2-s2.0-84949895035
utb.identifier.wok 000370085900018
utb.identifier.coden CMEJA
utb.source j-scopus
dc.date.accessioned 2016-04-12T11:50:45Z
dc.date.available 2016-04-12T11:50:45Z
dc.description.sponsorship 21236003, NSFC, National Natural Science Foundation of China; 21522602, NSFC, National Natural Science Foundation of China
dc.description.sponsorship National Natural Science Foundation of China [21236003, 21522602]; Shanghai Rising-Star Program [15QA1401200]; International Science and Technology Cooperation Program of China [2015DFA51220]; 111 Project [B14018]; Fundamental Research Funds for the Central Universities
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Haiyan Wang a, Dayong Ren a, Zhengju Zhu a, Petr Saha b, Hao Jiang a*, Chunzhong Li a* a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China b Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic * Corresponding authors. E-mail addresses: jianghao@ecust.edu.cn (H. Jiang), czli@ecust.edu.cn (C. Li).
utb.fulltext.dates Received 10 October 2015 Received in revised form 29 November 2015 Accepted 30 November 2015 Available online 11 December 2015
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Files in this item

Show simple item record