Publikace UTB
Repozitář publikační činnosti UTB

Evolutionary algorithms powered by nonrandom processes

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Evolutionary algorithms powered by nonrandom processes en
dc.contributor.author Zelinka, Ivan
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Pluháček, Michal
dc.relation.ispartof MENDEL 2013
dc.identifier.issn 1803-3814 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-80-214-4755-4
dc.date.issued 2013
dc.citation.spage 145
dc.citation.epage 152
dc.event.title 19th International Conference on Soft Computing: Evolutionary Computation, Genetic Programming, Swarm Intelligence, Fuzzy Logic, Neural Networks, Fractals, Bayesian Methods, MENDEL 2013
dc.event.location Brno
utb.event.state-en Czech Republic
utb.event.state-cs Česká republika
dc.event.sdate 2013-06-26
dc.event.edate 2013-06-28
dc.type conferenceObject
dc.language.iso en
dc.publisher Brno University of Technology
dc.subject Deterministic chaos en
dc.subject Deterministic number series en
dc.subject Evolutionary algorithms en
dc.subject Pseudorandom numbers en
dc.description.abstract Inherent part of evolutionary algorithms that are based on Darwin theory of evolution and Mendel theory of genetic heritage, are random processes since genetic algorithms and evolutionary strategies use. In this participation we present extended experiments (of our previous) of selected evolutionary algorithms and test functions showing whether random processes really are needed in evolutionary algorithms. In our experiments we used differential evolution and SOMA algorithms with functions 2ndDeJong, Ackley, Griewangk, Rastrigin, SineWave and StretchedSineWave. We use n periodical deterministic processes (based on deterministic chaos principles) instead of pseudorandom number generators and compare performance of evolutionary algorithms powered by those processes and by pseudorandom number generators. Results presented here are numerical demonstration rather than mathematical proofs. We propose hypothesis that certain class of deterministic pro- cesses can be used instead of random number generators without lowering the performance of evolutionary algorithms. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1004672
utb.identifier.obdid 43870787
utb.identifier.scopus 2-s2.0-84905727914
utb.source d-scopus
dc.date.accessioned 2015-06-04T12:54:48Z
dc.date.available 2015-06-04T12:54:48Z
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Pluháček, Michal
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam