Publikace UTB
Repozitář publikační činnosti UTB

3D clogging modeling of polyurethane nanofiber based filters by ultrafine aerosol particles

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title 3D clogging modeling of polyurethane nanofiber based filters by ultrafine aerosol particles en
dc.contributor.author Zatloukal, Martin
dc.contributor.author Sambaer, Wannes
dc.contributor.author Kimmer, Dušan
dc.relation.ispartof Annual Technical Conference - ANTEC, Conference Proceedings
dc.identifier.isbn 978-1-63266-530-0
dc.date.issued 2013
utb.relation.volume 2
dc.citation.spage 1697
dc.citation.epage 1702
dc.event.title 71st Annual Technical Conference of the Society of Plastics Engineers 2013, ANTEC 2013
dc.event.location Cincinnati, OH
utb.event.state-en United States
utb.event.state-cs Spojené státy americké
dc.event.sdate 2013-04-22
dc.event.edate 2013-04-24
dc.type conferenceObject
dc.language.iso en
dc.publisher Society of Plastics Engineers
dc.relation.uri http://app.knovel.com/web/view/pdf/show.v/rcid:kpQQGV63MF/cid:kt00U1MVL2/viewerType:pdf/root_slug:antec-2013-proceedings/url_slug:clogging-modeling-polyurethane
dc.relation.uri http://www.4spe.org/Resources/resource.aspx?ItemNumber=5562
dc.description.abstract Realistic SEM image based 3D filter model, transition/free molecular flow regime, Brownian diffusion, aerodynamic slip, particle-fiber and particle-particle interactions together with a novel Euclidian distance map based methodology to calculate the pressure drop has been utilized for a polyurethane nanofiber based filter prepared via electrospinning process in order to more deeply understand the filter clogging, filtration cake formation and its role on the final filter efficiency. By using proposed theoretical approach for the 3D filter clogging modeling, it has been found that the decrease in the fiber-particle friction coefficient leads to higher pressure drop, lower filtration efficiency, lower quality factor and lower quality factor sensitivity to the increased collected particle mass due to more deeper particle penetration in the filter and creation of smaller pores. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1004657
utb.identifier.obdid 43871041
utb.identifier.scopus 2-s2.0-84903531401
utb.identifier.coden ACPED
utb.source d-scopus
dc.date.accessioned 2015-06-04T12:54:45Z
dc.date.available 2015-06-04T12:54:45Z
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Zatloukal, Martin
utb.contributor.internalauthor Sambaer, Wannes
utb.fulltext.affiliation Martin Zatloukal1,2, Wannes Sambaer1,2 and Dusan Kimmer3 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin, Czech Republic 2 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, TGM 275, 762 72 Zlin, Czech Republic 3 SPUR a.s., T. Bati 299, 764 22 Zlín, Czech Republic
utb.fulltext.dates -
utb.fulltext.references 1. Leung, W.W.F., Hung C.H. and Yuen P.T., Aerosol Sci. Tech. 2009, vol. 43, no. 12, p. 1174-1183. 2. Leung, W.W.F., Hung C.H. and Yuen P.T., Sep. Purif. Technol. 2010, vol. 71, no.1, p.30-37. 3. Podgorski, A., Balazy A. and Gradon L., Chem. Eng. Sci. 2006, vol. 61, p.6804-6815. 4. Hosseini S.A. and Tafreshi H.V., Sep. Purif. Technol. 2010, vol. 74, p.160-169. 5. Zhou B., Tronville P. and Rivers R., Fibers and Polymers 2009, vol. 10, no. 4, p.526-538. 6. Sambaer W., Zatloukal M. and Kimmer D., Chem. Eng. Sci. 2011, vol. 66, p.613-623. 7. Maze B., Tafreshi H.V., Wang Q., Pourdeyhimi B., J. Aerosol Sci. 2007, vol. 38, no. 5, p.550-571. 8. Hosseini S.A. and Tafreshi H.V., Chem. Eng. Sci. 2010, vol. 65, p.2249-2254. 9. Hosseini S.A. and Tafreshi H.V., Power Technol. 2010, vol. 201, p.153-160. 10. RebaI, M., Drolet F., Vidal D., Vakeiko I., Bertrand F. A, Asia-Pac. J. Chem. Eng. 2011, vol. 6, p.26-37. 11. Jaganathan, S., Tafreshi H.V. and Pourdeyhimi B., Chem. Eng. Sci. 2008, vol. 63, p.244-252. 12. Elmoe, T.D., Tricoli A., Grunwaldt J, Pratsinis S., J. Aerosol Sci. 2009, vol. 40, p.965-981. 13. Thomas, D., Penicot P., Contal P., Leclerc D. and Vendel J., Chem. Eng. Sci. 2001, vol. 56, p.3549-3561. 14. Billings, C.E., PhD Thesis, California Institute of Technology, Pasadena, USA, 1966, 220p. 15. Kanaoka, C., and Hiragi S., J. Aerosol Sci. 1990, vol. 21, p.127-137. 16. Witten, T., Sander L., Physical Review Letters 1983, vol. 27, p.5686. 17. Payatakes, A.C. and Gradon L., American Int. Chem. Eng. J. 1980, vol. 26, p.443-454. 18. Cheung, C.S., Cao Y.H. and Yan Z.D., Computation Mechanics 2005, vol. 35, no. 6, p.449-458. 19. Kanaoka, C., Hiragi S. and Tanthapanichakoon T., Powder Technol. 2001, vol. 118, no. 1-2, p.97–106. 20. Huang, B., Turton R., Park J., Famouri P, and Boyle E.J., Powder Technol. 2006, vol. 163, no. 1-2, p. 23-31. 21. Karadimos, A. and Ocono R, Powder Technol. 2003, vol. 137, p.109-119. 22. Chang, Y., Huang, Y., Luo Z. and Zhang G., Sep. Purif. Technol. 2008, vol. 63 p.566-576. 23. Sambaer, W., Zatloukal, M., Recent Advances in Fluid Mechanics, Heat & Mass Transfer and Biology - Proc. of the 9th WSEAS Int. Conf. on FLUIDS'12, 9th WSEAS Int. Conf. on HMT'12, 9th WSEAS Int. Conf. on MABE'12, pp. 144-149, 2012. 24. Sambaer, W., M. Zatloukal M. and Kimmer D., Polym. Test. 2010, vol. 29, p.82–94. 25. Sambaer, W., Zatloukal, M., Kimmer, D., Chemical Engineering Science 2012, 82, pp. 299-311. 26. Altmann, J., Ripperger, S., J. Membrane Sci. 1997, vol. 124, p.119-128. 27. Mcnenly, M.J., Gallis, M.A., and Boyd, I.D., Int. J. Numer. Meth. Fl. 2005, vol. 49, p.1169-1191. 28. Rubin, G., PhD Thesis, TH Karlsruhe, Germany, 1977. 29. Mclaughlin, J.B., J. Fluid. Mech. 1993, vol. 246, p.249-265. 30. Bhushan, B., Nanotribology and Nanomechanics: An Introduction, Springer 2005, 1148p. 31. Madler L., Lall A.A. and Friedlander S.K., Nanotechnology 2006, vol. 17, no. 19, p. 4783–4795. 32. Rodriguez-Perez D., Castillo J.L. and Antoranz J.C., Physical Review Letters 2005, vol. 72, no. 2, p. 021403-1-021403-9. 33. Przekop, R., Gradon, L., Aerosol Science and Technology 2008, vol. 42, p. 483-493. 34. Wang H.C. and Kasper G., J. Aerosol Sci. 1991, vol. 22 , no. 1, p. 31–41. 35. Pawu K.T. and Braaten D.A., Aerosol Sci. Tech. 1995, vol. 23 , no. 1, p. 72–79.
utb.fulltext.sponsorship The authors wish to acknowledge the Grant Agency of the Czech Republic (grant No. P108/10/1325) for the financial support. This article was written with support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111).
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam