TBU Publications
Repository of TBU Publications

Conformal holomorphically projective mappings satisfying a certain initial condition

DSpace Repository

Show simple item record

dc.title Conformal holomorphically projective mappings satisfying a certain initial condition en
dc.contributor.author Chudá, Hana
dc.contributor.author Shiha, Mohsen
dc.relation.ispartof Miskolc Mathematical Notes
dc.identifier.issn 1787-2405 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2013
utb.relation.volume 14
utb.relation.issue 2
dc.citation.spage 569
dc.citation.epage 574
dc.type article
dc.language.iso en
dc.publisher Miskolc University Press en
dc.relation.uri http://mat76.mat.uni-miskolc.hu/~mnotes/index.php?page=article&name=mmn_917
dc.subject Conformal e-Kähler manifolds en
dc.subject Conformal holomorphically projective mappings en
dc.subject Conformal mappings en
dc.subject Holomorphically projective mappings en
dc.subject Initial conditions en
dc.description.abstract In this paper we study conformal holomorphically projective mappings between conformal e-Kähler manifolds Kn=(M, g, F ) and Kn=( M, g, F ), i. e. diffeomorphisms f : M → M satisfying f = f1 o f2 o f3, where f1, f3 are conformal mappings and f2 is a holomorphically projective mapping between e-Kähler manifolds (i. e. Kähler, pseudo-Kähler and hyperbolic Kähler manifolds). Suppose that the initial condition f * g = k . g is satisfied at a point x0 ∈ M and that at this point the Weyl conformal tensor satisfies a certain inequality. We prove that the mapping f is then necessarily conformal. © 2013 Miskolc University Press. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1003646
utb.identifier.obdid 43871016
utb.identifier.scopus 2-s2.0-84892459521
utb.identifier.wok 000329498700018
utb.source j-scopus
dc.date.accessioned 2014-02-12T16:15:50Z
dc.date.available 2014-02-12T16:15:50Z
dc.description.sponsorship [CZ.1.07/2.3.00/30.0035]
dc.rights.access openAccess
utb.contributor.internalauthor Chudá, Hana
Find Full text

Files in this item

Show simple item record