Publikace UTB
Repozitář publikační činnosti UTB

Bio-assessing of environmental pollution via monitoring of Metallothionein level using electrochemical detection

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Bio-assessing of environmental pollution via monitoring of Metallothionein level using electrochemical detection en
dc.contributor.author Stejskal, Karel
dc.contributor.author Křížková, Soňa
dc.contributor.author Adam, Vojtěch
dc.contributor.author Sures, Bernd
dc.contributor.author Trnková, Libuše
dc.contributor.author Zehnálek, Josef
dc.contributor.author Hubálek, Jaromír
dc.contributor.author Beklová, Miroslava
dc.contributor.author Hanuštiak, Pavel
dc.contributor.author Svobodová, Zdenka
dc.contributor.author Horna, Aleš
dc.contributor.author Kizek, René
dc.relation.ispartof IEEE Sensors Journal
dc.identifier.issn 1530-437X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2008-09/2008-10
utb.relation.volume 8
utb.relation.issue 9-10
dc.citation.spage 1578
dc.citation.epage 1585
dc.event.title 5th IEEE Sensors Conference
dc.event.location Daegu
utb.event.state-en Democratic People's Republic of Korea
utb.event.state-cs Severní Korea
dc.event.sdate 2006-10-22
dc.event.edate 2006-10-25
dc.type article
dc.type conferenceObject
dc.language.iso en
dc.publisher The Institute of Electrical and Electronics Engineers (IEEE) en
dc.identifier.doi 10.1109/JSEN.2008.928500
dc.relation.uri http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4609975
dc.subject Amperometric detection en
dc.subject biomarker en
dc.subject electrochemical sensors en
dc.subject fish en
dc.subject flow injection analysis en
dc.subject heavy metal en
dc.subject metallothionein en
dc.subject poecilia reticulata en
dc.subject silver en
dc.description.abstract In this paper, we report on an investigation of affecting guppy fishes (Poecilia reticulata) by silver ions (0, 0.3, 0.6, 1.2, 2.5, and 5 mu M) for seven days under well-controlled experimental conditions. To observe the physiological changes, we attempted to determine metallothionein (MT) as a biomarker of heavy metal stress. For this purpose, we proposed a sensor utilizing a carbon electrode coupled with flow injection analysis. The experimental conditions, which have been optimized, were as follows-applied potential: 750 mV, mobile phase: Britton-Robinson buffer (pH 1.9) with How rate of 0.6 ml/min, time filter: 2.5 s, "current R": 1 mu A. Under these conditions, the detection limit of MT was estimated as 100 pM. After the optimizing step, the fish tissues were measured. Based on the results obtained, MT content increased with increasing dose of silver ions and time of the treatment. The results obtained were in good correlation with those obtained by adsorptive transfer stripping technique coupled with differential pulse voltammetry Brdicka reaction, which was used as the reference technique. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1001850
utb.identifier.obdid 43857023
utb.identifier.obdid 43857370
utb.identifier.scopus 2-s2.0-85008013885
utb.identifier.wok 000260384900014
utb.source d-wok
dc.date.accessioned 2011-08-09T07:34:05Z
dc.date.available 2011-08-09T07:34:05Z
utb.contributor.internalauthor Horna, Aleš
utb.fulltext.affiliation Karel Stejskal, Sona Krizkova, Vojtech Adam, Bernd Sures, Libuse Trnkova, Josef Zehnalek, Jaromir Hubalek, Miroslava Beklova, Pavel Hanustiak, Zdenka Svobodova, Ales Horna, and Rene Kizek K. Stejskal is with the Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, CZ-613 00 Brno, Czech Republic and also with the Department of Biochemistry, Faculty of Science, Masaryk University, CZ-611 37 Brno, Czech Republic. S. Krizkova, J. Zehnalek, and R. Kizek are with the Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, CZ-613 00 Brno, Czech Republic (e-mail: kizek@sci.muni.cz). V. Adam is with the Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, CZ-613 00 Brno, Czech Republic and also with the Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University of Agriculture and Forestry, CZ-613 00 Brno, Czech Republic. B. Sures is with the Universität Duisburg-Essen, Applied Zoology and Hydrobiology, D-45117 Essen, Germany. L. Trnkova is with the Department of Chemistry, Faculty of Science, Masaryk University, CZ-611 37 Brno, Czech Republic. J. Hubalek is with the Department of Microelectronics, Faculty of Electrical Engineering and Communication, Technical University of Brno, CZ-602 00 Brno, Czech Republic. M. Beklova and P. Hanustiak are with the Department of Veterinary Ecology and Environmental Protection, University of Veterinary and Pharmaceutical Sciences, CZ-612 42 Brno, Czech Republic. Z. Svobodova is with the Institute of Parasitology, University of Veterinary and Pharmaceutical Sciences, CZ-612 42 Brno, Czech Republic. A. Horna is with the Faculty of Technology, Tomas Bata University, CZ-762 72 Zlin, Czech Republic.
utb.fulltext.dates Manuscript received March 31, 2007 revised June 30, 2007 and September 28, 2007 accepted January 6, 2008
utb.fulltext.references [1] A. Rios, A. Escarpa, M. C. Gonzalez, and A. G. Crevillen, “Challenges of analytical microsysterns,” Trac-Trends Anal. Chem., vol. 25, no. 5, pp. 467–479, 2006. [2] E. M. Durso and P. R. Coulet, “Phosphate-sensitive enzyme electrode—A potential sensor for environment control,” Anal. Chim. Acta, vol. 239, no. 1, pp. 1–5, 1990. [3] J. Petrek, J. Vitecek, H. Vlasinova, R. Kizek, K. J. Kramer, V. Adam, B. Klejdus, and L. Havel, “Application of computer imaging, stripping voltammetry and mass spectrometry to study the effect of lead (PbEDTA) on the growth and viability of early somatic embryos of Norway spruce (Picea abies/L./Karst.),” Anal. Bioanal. Chem, vol. 383, no. 4, pp. 576–586, 2005. [4] J. Petrlova, R. Mikelova, K. Stejskal, A. Kleckerova, O. Zitka, J. Petrek, L. Havel, J. Zehnalek, V. Adam, L. Trnkova, and R. Kizek, “Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with Coul-Array detection,” J. Sep. Sci., vol. 29, no. 8, pp. 1166–1173, 2006. [5] R. Selesovska-Fadrna, M. Fojta, T. Navratil, and J. Chylkova, “Brdicka-type processes of cysteine and cysteine-containing peptides on silver amalgam electrodes,” Anal. Chim. Acta, vol. 582, no. 2, pp. 344–352, 2007. [6] V. Dorcak and I. Sestakova, “Electrochemical behavior of phytochelatins and related peptides at the hanging mercury drop electrode in the presence of cobalt(II) ions,” Bioelectrochemistry, vol. 68, no. 1, pp. 14–21, 2006. [7] S. Krizkova, O. Zitka, V. Adam, M. Beklova, A. Horna, Z. Svobodova, B. Sures, L. Trnkova, L. Zeman, and R. Kizek, “Possibilities of electrochemical techniques in metallothionein and lead detection in fish tissues,” Czech J. Anim. Sci., vol. 52, no. 5, pp. 143–148, 2007. [8] P. A. Lieberzeit and F. L. Dickert, “Sensor technology and its application in environmental analysis,” Anal. Bioanal. Chem., vol. 387, no. 1, pp. 237–247, 2007. [9] P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. Latest advancements and trends,” Anal. Chem., vol. 78, no. 12, pp. 3887–3907, 2006. [10] C. A. Grimes, C. S. Mungle, Z. F. Zeng, M. K. Jain, W. R. Dreschel, M. Paulose, and K. G. Ong, “Wireless magnetoelastic resonance sensors: A critical review,” Sensors, vol. 2, no. 7, pp. 294–313, 2002. [11] N. Triroj, M. A. Lapierre-Devlin, S. O. Kelley, and R. Beresford, “Microfluidic three-electrode cell array for low-current electrochemical detection,” IEEE Sensors J., vol. 6, no. 6, pp. 1395–1402, Jun. 2006. [12] D. Lowinsohn and M. Bertotti, “Electrochemical sensors: Fundamentals and applications in microenvironments,” Quim. Nova, vol. 29, no. 6, pp. 1318–1325, 2006. [13] R. Ovadekova, S. Jantova, S. Letasiova, I. Stepanek, and J. Labuda, “Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells,” Anal. Bioanal. Chem., vol. 386, no. 7–8, pp. 2055–2062, 2006. [14] E. Bakker and Y. Qin, “Electrochemical sensors,” Anal. Chem., vol. 78, no. 12, pp. 3965–3983, 2006. [15] J. Wang, “Amperometric biosensors for clinical and therapeutic drug monitoring: A review,” J. Pharm. Biomed. Anal., vol. 19, no. 1–2, pp. 47–53, 1999. [16] D. Potesil, R. Mikelova, V. Adam, R. Kizek, and R. Prusa, “Change of the protein p53 electrochemical signal according to its structural form—Quick and sensitive distinguishing of native, denatured, and aggregated form of the “guardian of the genome”,” Protein J., vol. 25, no. 1, pp. 23–32, 2006. [17] T. Giordani, L. Natali, B. E. Maserti, S. Taddei, and A. Cavallini, “Characterization and expression of DNA sequences encoding putative type-II metallothioneins in the seagrass Posidonia oceanica,” Plant Physiol., vol. 123, no. 4, pp. 1571–1581, 2000. [18] I. Sochova, J. Hofman, and I. Holoubek, “Using nematodes in soil ecotoxicology,” Environ. Int., vol. 32, no. 3, pp. 374–383, 2006. [19] C. Leyval, K. Turnau, and K. Haselwandter, “Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects,” Mycorrhiza, vol. 7, no. 3, pp. 139–153, 1997. [20] R. Mikelova, J. Baloun, J. Petrlova, V. Adam, L. Havel, J. Petrek, A. Horna, and R. Kizek, “Electrochemical determination of Ag-ions in environment waters and their action on plant embryos,” Bioelectrochemistry, vol. 70, no. 2, pp. 508–518, 2007. [21] V. Supalkova, D. Huska, V. Diopan, P. Hanustiak, O. Zitka, K. Stejskal, J. Baloun, J. Pikula, L. Havel, J. Zehnalek, V. Adam, L. Trnkova, M. Beklova, and R. Kizek, “Electroanalysis of plant thiols,” Sensors, vol. 7, no. 6, pp. 932–959, 2007. [22] V. Supalkova, J. Petrek, J. Baloun, V. Adam, K. Bartusek, L. Trnkova, M. Beklova, V. Diopan, L. Havel, and R. Kizek, “Multi-instrumental investigation of affecting of early somatic embryos of Spruce by cadmium(II) and lead(II) ions,” Sensors, vol. 7, no. 5, pp. 743–759, 2007. [23] B. Sures, “Environmental parasitology: Relevancy of parasites in monitoring environmental pollution,” Trends Parasitol., vol. 20, no. 4, pp. 170–177, 2004. [24] F. Lessire, A. Delaunois, P. Gustin, and M. Ansay, “Biomarkers and bioindicators in vertebrates: Importance in evaluation of quality of an ecosystem,” Ann. Med. Vet., vol. 141, no. 4, pp. 281–290, 1997. [25] L. P. Smirnov, I. V. Sukhovskaya, and N. N. Nemova, “Effects of environmental factors on low-molecular-weight peptides of fishes: A review,” Russ. J. Ecol., vol. 36, no. 1, pp. 41–47, 2005. [26] B. Raspor, Z. Dragun, M. Erk, D. Ivankovic, and J. Pavicic, “Is the digestive gland of Mytilus galloprovincialis a tissue of choice for estimating cadmium exposure by means of metallothioneins?,” Sci. Total Environ., vol. 333, no. 1–3, pp. 99–108, 2004. [27] J. Pavicic, D. Ivankovic, C. Lucu, B. Hamer, M. Erk, M. TusekZnidaric, and I. Falnoga, “Ecotoxicological evaluation of metallothionein level in selected tissues of estuarine invertebrates,” Toxicol. Lett., vol. 164, pp. S163–S163, 2006. [28] M. Fojta, M. Fojtova, L. Havran, H. Pivonkova, V. Dorcak, and I. Sestakova, “Electrochemical monitoring of phytochelatin accumulation in nicotiana tabacum cells exposed to sub-cytotoxic and cytotoxic levels of cadmium,” Anal. Chim. Acta, vol. 558, no. 1–2, pp. 171–178, 2006. [29] J. H. R. Kagi and A. Schaffer, “Biochemistry of metallothionein,” Biochemistry, vol. 27, no. 23, pp. 8509–8515, 1988. [30] J. W. Gorsuch and S. J. Klaine, “Toxicity and fate of silver in the environment,” Environmental Toxicolology Chemistry, vol. 17, no. 4, pp. 537–538, 1998. [31] B. Raspor, M. Paic, and M. Erk, “Analysis of metallothioneins by the modified brdicka procedure,” Talanta, vol. 55, no. 1, pp. 109–115, 2001. [32] R. Kizek, J. Vacek, L. Trnkova, B. Klejdus, and L. Havel, “Application of catalytic reactions on a mercury electrode for electrochemical detection of metallothioneins,” Chem. Listy, vol. 98, no. 4, pp. 166–173, 2004. [33] J. Petrlova, D. Potesil, R. Mikelova, O. Blastik, V. Adam, L. Trnkova, F. Jelen, R. Prusa, J. Kukacka, and R. Kizek, “Attomole voltammetric determination of metallothionein,” Electrochim. Acta, vol. 51, no. 24, pp. 5112–5119, 2006. [34] S. Yazgan, H. Horn, and H. D. Isengard, “Honey as bio indicator by screening the heavy metal content of the environment,” Dtsch. Lebensm.-Rundsch., vol. 102, no. 5, pp. 192–194, 2006. [35] D. Potesil, J. Petrlova, V. Adam, J. Vacek, B. Klejdus, J. Zehnalek, L. Trnkova, L. Havel, and R. Kizek, “Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection,” J. Chromatogr. A, vol. 1084, no. 1–2, pp. 134–144, 2005. [36] C. Singer, S. Zimmermann, and B. Sures, “Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): Comparison with lead and cadmium exposures,” Aquat. Toxicol., vol. 75, no. 1, pp. 65–75, 2005. [37] B. Sures, “How parasitism and pollution affect the physiological homeostasis of aquatic hosts,” J. Helminthol., vol. 80, no. 2, pp. 151–157, 2006. [38] J. Kukacka, J. Petrlova, R. Prusa, V. Adam, B. Sures, M. Beklova, J. Havel, and R. Kizek, “Changes of content of glutathione and metallothionein at plant cells and invertebrate treated by platinum group metals,” Faseb J., vol. 20, no. 5, pp. A1196–A1196, 2006. [39] V. Adam, J. Petrlova, D. Potesil, J. Zehnalek, B. Sures, L. Trnkova, F. Jelen, and R. Kizek, “Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor,” Electroanalysis, vol. 17, no. 18, pp. 1649–1657, 2005. [40] V. Adam, J. Zehnalek, J. Petrlova, D. Potesil, B. Sures, L. Trnkova, F. Jelen, J. Vitecek, and R. Kizek, “Phytochelatin modified electrode surface as a sensitive heavy-metal ion biosensor,” Sensors, vol. 5, no. 1–2, pp. 70–84, 2005. [41] M. Strouhal, R. Kizek, J. Vecek, L. Trnkova, and M. Nemec, “Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica,” Bioelectrochemistry, vol. 60, no. 1–2, pp. 29–36, 2003. [42] R. Kizek, L. Trnkova, and E. Palecek, “Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry,” Anal. Chem., vol. 73, no. 20, pp. 4801–4807, 2001. [43] J. Vacek, J. Petrek, R. Kizek, L. Havel, B. Klejdus, L. Trnkova, and F. Jelen, “Electrochemical determination of lead and glutathione in a plant cell culture,” Bioelectrochemistry, vol. 63, no. 1–2, pp. 347–351, 2004. [44] C. Hogstrand, C. M. Wood, N. R. Bury, R. W. Wilson, J. C. Rankin, and M. Grosell, “Binding and movement of silver in the intestinal epithelium of a marine teleost fish, the European flounder (Platichthys flesus),” Comp. Biochem. Physiol. C-Toxicol. Pharmacol., vol. 133, no. 1–2, pp. 125–135, 2002. [45] C. M. Wood, R. C. Playle, and C. Hogstrand, “Physiology and modeling of mechanisms of silver uptake and toxicity in fish,” Environmental Toxicology Chemistry, vol. 18, no. 1, pp. 71–83, 1999. [46] C. Hogstrand and C. M. Wood, “Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: Implications for water quality criteria,” Environmental Toxicology Chemistry, vol. 17, no. 4, pp. 547–561, 1998. [47] I. Sestakova, M. Kopanica, L. Havran, and E. Palecek, “Constant current chronopotentiometric stripping analysis of Cd-metallothionein on carbon and mercury electrodes. Comparison with voltammetry,” Electroanalysis, vol. 12, no. 2, pp. 100–104, 2000. [48] I. Sestakova and P. Mader, “Voltammetry on mercury and carbon electrodes as a tool for studies of metallothionein interactions with metal ions,” Cell. Mol. Biol., vol. 46, no. 2, pp. 257–267, 2000. [49] M. Tomschik, L. Havran, M. Fojta, and E. Palecek, “Constant current chronopotentiometric stripping analysis of bioactive peptides at mercury and carbon electrodes,” Electroanalysis, vol. 10, no. 6, pp. 403–409, 1998. [50] J. Limson and T. Nyokong, “Voltammetric behavior of cysteine and metallothionein on cobalt(II) tetrasulfonated phthalocyanine modified glassy carbon electrodes,” Electroanalysis, vol. 9, no. 3, pp. 255–260, 1997. [51] B. Klejdus, J. Vacek, V. Adam, J. Zehnalek, R. Kizek, L. Trnkova, and V. Kuban, “Determination of isoflavones in soybean food and human urine using liquid chromatography with electrochemical detection,” J. Chromatogr. B, vol. 806, no. 2, pp. 101–111, 2004. [52] G. L. Long and J. D. Winefordner, “Limit of detection,” Anal. Chem., vol. 55, no. 7, pp. A712–A724, 1983. [53] I. Lavagnini, R. Antiochia, and F. Magno, “A calibration-base method for the evaluation of the detection limit of an electrochemical biosensor,” Electroanalysis, vol. 19, no. 11, pp. 1227–1230, 2007. [54] M. El Hourch, A. Dudoit, and J. C. Amiard, “An optimization procedure for determination of metallothionein by square wave cathodic stripping voltammetry: Application to marine worms,” Anal. Bioanal. Chem., vol. 378, no. 3, pp. 776–781, 2004. [55] G. Alvarez-Llamas, M. R. F. de la Campa, and A. Sanz-Medel, “Metallothionein isoforms separation and cadmium speciation by capillary electrophoresis with ultraviolet and quadrupole-inductively coupled plasma mass spectrometric detection,” Anal. Chim. Acta, vol. 448, no. 1–2, pp. 105–119, 2001. [56] A. E. S. de Vives, S. Moreira, S. M. B. Brienza, J. G. S. Medeiros, M. Tomazello, O. Zucchi, and V. F. do Nascimento, “Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence,” Spectroc. Acta Pt. B-Atom. Spectr., vol. 61, no. 10–11, pp. 1170–1174, 2006. [57] D. R. Livingstone, “Biotechnology and pollution monitoring—Use of molecular biomarkers in the aquatic environment,” J. Chem. Technol. Biotechnol., vol. 57, no. 3, pp. 195–211, 1993. [58] R. van der Oost, J. Beyer, and N. P. E. Vermeulen, “Fish bioaccumulation and biomarkers in environmental risk assessment: A review,” Environ. Toxicol. Pharmacol, vol. 13, no. 2, pp. 57–149, 2003.
utb.fulltext.sponsorship This work was supported under Grants GACR 526/07/0808, MSMT 6215712402, MSMT 2636/F4b, and MSMT INCHEMBIOL 0021622412.
utb.fulltext.projects GACR 526/07/0808
utb.fulltext.projects MSMT 6215712402
utb.fulltext.projects MSMT 2636/F4b
utb.fulltext.projects MSMT INCHEMBIOL 0021622412
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam