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Abstract
The presented article is dedicated to a new way of teaching substitution in algebra. In order 
to effectively master the subject matter, it is necessary for students to perceive the equal 
sign equivalently, to learn to manipulate expressions as objects, and to perceive and use 
transformations based on defining their own equivalences. According to the results of sev-
eral researches, these changes do not occur automatically, and the neglect of their develop-
ment leads to students’ insufficient adoption of substitution. The submitted contribution 
presents a new way of teaching substitution, the stages of which support the gradual devel-
opment of the necessary competences of students, so that substitution becomes part of their 
computing apparatus. The effectiveness of the mentioned method of teaching substitution 
was also verified experimentally. By conducting a pedagogical experiment, it was con-
firmed that the application of the substitution teaching method developed by us led to more 
frequent use of substitution by students from the experimental group (47 students) com-
pared to students from the control group (82 students) who learned substitution in the usual 
way. It emerged from the interview with experimental group students that they considered 
the proposed method suitable and that it encouraged them to learn substitution in depth.

Keywords  Equivalences · Manipulation · Substitution · Transformation · Teaching 
mathematics

1  Introduction

Mathematics has a prominent place in the educational process because we encounter it and 
its applications quite often in everyday life (English & Gainsburg, 2015). The central topic 
of school mathematics is algebra (Brown et al., 2014). One of the reasons for emphasizing 
algebra in school mathematics is the fact that algebraic reasoning is considered an effec-
tive means of developing children’s thinking (Blanton et al., 2015; Brizuela & Schliemann, 
2004; Kaput et al., 2008). The basis of algebraic thinking can be considered the ability to 
generalize and at the same time to recognize and create connections between individual 
mathematical knowledge (Cai & Knuth, 2011). According to the findings of Kirshner and 
Awtry (2004), students’ success in algebra correlates with how the individual student man-
aged the transition from arithmetic to algebraic thinking.
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In this process, it is important that students overcome the obstacles associated with the 
transition to symbolic algebra (Filloy et  al., 2008), because within the teaching  of alge-
bra, a large space is devoted to solving equations and inequalities. In both cases, the abil-
ity to manipulate algebraic expressions is important (Pedersen, 2015). When manipulating 
algebraic expressions, one is transformed into an expression equivalent to it. The equiva-
lence of two expressions is the basis for substitution use, which often occurs when solving 
algebraic problems, but also problems from higher mathematics. Several research studies 
report students’ problems in the application of substitution in task solving. de Lima and 
Tall (2008) reported that high school students tend to use memorized rules (e.g., moving 
the unknown from one side of the equation to the other) rather than substitution solutions 
(e.g., substituting m = 0, into the equation) when solving equations with an unknown on 
both sides of the equation 2m = 4m). Instead of looking for the value of the unknown that 
fits the equation, there is a general tendency to move the symbols toward the desired solu-
tion (de Lima & Tall, 2008). Filloy et al. (2010) found that when solving algebraic equa-
tions, some high school students could often replace the unknown with a number (e.g., y 
= 2), but could not replace the variables with the expression containing another variable 
(e.g., y = 3x + 1). The wide spectrum of substitution application and students’ difficulties 
in solving tasks associated with substitution are the reason for the creation of appropriate 
methods of teaching substitution (Jones et al., 2012). Considering the mentioned problems, 
our goal was to develop and experimentally verify an innovative method of teaching substi-
tution in selected parts of high school mathematics curriculum.

2 � Theoretical basis

In mathematical terms, algebraic substitution involves (a) replacing a more complex 
expression with one variable and (b) replacing one variable with a more complex expres-
sion (Jupri et al., 2016). The very concept of substitution — replacing one representation 
with another — is based on the formal mathematical definition of equivalence. If the rela-
tion is reflexive, transitive, and symmetric, it is an equivalence relation (e.g., Fischer et al., 
2019; Stewart & Tall, 2015).

The concept of mathematical equivalence, specifically the symbolic representation of 
equivalence relation using sign “=”, is the accepted basis of algebraic thinking (Carpenter 
et  al., 2003; National Governors Association Center for Best Practices & Council of Chief 
State School Officers [NGA & CCSSO], 2010 & Stephens et al., 2021). Equivalence expressed 
by sign “=” is a relationship between two mathematical expressions, on the basis of which we 
can claim that the expressions have the same value, or that the expressions represent the same 
mathematical object (Kieran & Martínez-Hernández, 2022). According to several researches 
(e.g., Booth et al., 2014; Byrd et al., 2015; Fyfe et al., 2018; Fyfe & Brown, 2020; Knuth et al., 
2006; Matthews et al., 2012), the ability to interpret sign “=” is a relationally relevant predic-
tor of the student’s future success in algebra. The relational conception of the equal sign means 
that sign “=” indicates the “sameness” of two objects or expressions (Carpenter et al., 2003; 
Kieran, 1981; Knuth et al., 2005; McNeil et al., 2011). The relational perception of sign “=” 
allows us to interpret the symbolic notation 4x2 − 1 = (2x − 1)(2x + 1): the expressions 4x2 − 1 
and (2x − 1)(2x + 1) have the same value for the permissible values of x. Although the rela-
tional conception of “=” sign is an important basis for understanding mathematical equiva-
lence (e.g., Matthews & Fuchs, 2020; Simsek et al., 2019), Jones and Pratt (2012) argue that 
a full relational conception of the equal sign involves more than understanding “sameness”. 
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They propose that a complete relational view of equal sign includes a substitution compo-
nent in addition to “sameness”. The substitution concept of “=” sign is based on the transi-
tive and symmetric properties of equivalence (Simsek et al., 2019), which allow equivalent 
terms to be substituted for each other in mathematical equations. This concept allows equal 
sign to be interpreted as the equivalence of different-looking mathematical symbolic notations. 
Their equivalence (expressions have the same value) consequently enables their mutual inter-
changeability. The substitution concept makes it possible to replace number 14 in the expres-
sion 14 + 8 with the expression 12 + 2, because 14 = 12 + 2 (Jones & Pratt, 2012), which helps 
simplify the calculation. In the case of the algebraic notation 4x2 − 1 = (2x − 1)(2x + 1), the sub-
stitution concept of “=” sign means that the expression 4x2 − 1 can be replaced by the expres-
sion (2x − 1)(2x + 1) and vice versa. The original research by Jones et al. (2012) was not clear 
on the issue of the developmental arrangement of the relational and substitutional concept of 
equal sign. Later research (Simsek et al., 2019) suggests that sameness develops in students 
before substitution conception. These findings are consistent with the assertion of Donovan 
et al. (2022), who state that the substitution concept of equal sign follows logically from the 
sameness concept. At the same time, they point to the fact that the sameness concept of “=” 
sign is the necessary precursor to the creation of correct substitution concept. This opinion 
is also supported by the results of Lee and Pang (2021), who found that students who had a 
substitution concept of equal sign without a sameness concept learned the substitution rules 
but applied them in a way that was not consistent with the sameness concept. The proximity 
of the mentioned concepts of the “=” sign will be manifested in tasks that explicitly require 
students to rewrite the equality in a way that demonstrates its truth value. When solving such 
tasks, students may become sensitive to value-preserving substitutions. It is possible that in 
such arithmetic tasks, the differences between relational and substitutional conceptions of the 
equal sign are lost (Kieran & Martínez-Hernández, 2022). When solving algebraic problems, 
the sameness concept of “=” sign is not sufficient, because in algebra it is important for stu-
dents to distinguish between equality (the same value) and sameness concept: to be equal does 
not mean to be the same (Asquith et al., 2007; Behr et al., 1980). In order for the student to be 
able to effectively apply the equivalence of equal sign, they need to correctly interpret alge-
braic notations. The equivalence of two expressions, which is symbolically expressed by “=” 
sign, should be interpreted as follows: the given two expressions have the same value and are 
interchangeable. Such an interpretation of equivalence is sufficient because it is essential for 
the understanding of the substitution concept that the mathematical definition of equivalence 
does not make any demands on properties a and b beyond how they are related through the 
equivalence relation. Formally, a = b does not mean that a and b are “the same”, only that they 
are related by a given equivalence relation (Jones et al., 2012); i.e., they are interchangeable 
due to the same value.

Substitutions use not only symmetric, but also transitive properties of equivalence 
(Simsek et  al., 2019). From transitivity point of view, two different-looking algebraic 
notations are equivalent if we can transform one into the other (Sfard, 2008). For a cor-
rect understanding of transitivity of equivalence and the associated transformations of 
expressions, the so-called structural sense is needed, that is, the ability to “use equivalent 
structures of expression flexibly and creatively” (Linchevski & Livneh, 1999, p. 191). In 
school algebra, structural sense means a set of abilities, such as: see part of an expression 
as a unit; split an expression into meaningful subexpressions; recognize which manipula-
tion is possible and useful to perform; and choose appropriate manipulations that make 
the best use of the structure of the expression (Hoch & Dreyfus, 2005; Molina et  al., 
2017). Structural sense can be built by encouraging students to think of algebraic expres-
sions as objects rather than just arithmetic procedures to be performed. In this reasoning, 
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they should realize that the different representations of the same algebraic expression 
that they create while manipulating it have the same value and are interchangeable, i.e., 
are equivalent (Banerjee & Subramaniam, 2012). Students who have adopted a structural 
view of algebraic expressions can recognize the equivalence of the expressions 4x2 − 1 
and (2x − 1)(2x + 1) without having to perform individual calculations (Carpenter et al., 
2003; Sfard, 1991), because the written structure 4x2 − 1 = (2x − 1)(2x + 1) corresponds to 
the “formulaic equivalence” a2 − b2 = (a − b)(a + b).

In solving algebraic equations, students encounter one more type of symbolic nota-
tion, which also represents equivalence. Such an equivalence is, for example, the nota-
tion 4x − 2 = y. The stated equivalence, however, is not the result of manipulations; i.e., 
the expression 4x − 2 cannot be transformed into the expression y. When solving algebraic 
equations, the equivalence 4x − 2 = y is created by the problem solver and can be perceived 
as information. The solver informs that they defined a new (“custom”) equivalence that 
they will use to simplify or transform the task. With this type of equivalence, the student 
must realize that in the notation 4x − 2 = y, it is necessary to distinguish between the vari-
able y, which represents a number, i.e., the value of the expression 4x − 2, and the expres-
sion 4x − 2 itself, which represents one object (Dreyfus & Thompson, 1985). Such “own” 
equivalences are the basis for the use of substitution in solving equations, but also prob-
lems from higher mathematics. Although school algebra includes transformational aspects, 
too much focus on following rules when manipulating symbols will cause a lack of concep-
tual understanding of transformational activities (Kieran, 2007). Learners see expressions 
mainly as sets of symbols to be manipulated according to transformational rules, which 
may be arbitrary or well-reasoned by being based on a robust understanding of the struc-
ture of the expression (Kieran, 2004; Papadopoulos & Gunnarsson, 2020). Focusing on 
manipulations of expressions leads students to favor process strategies in solving equations.

For example, when solving the equation (x − 1)2 − 1 = 2(x − 1) + 4, the process strat-
egy manifests itself in the fact that the student transforms the equation into the form 
x2 − 4x − 2 = 0 (Jupri & Sispiyati, 2017). If the student uses the above-mentioned sense of 
the structure of the expression, they will recognize the “repeating” subexpression x-1 in the 
given equation and will use the opportunity to simplify the solution of the given equation 
by defining the equivalence x − 1 = y. In this case, the student will use the structure percep-
tion strategy to solve the equation. A student can use this strategy if they (1) recognize 
a familiar structure in its simplest form; (2) can treat a compound expression as a single 
entity and recognize a familiar structure in a more complex form; and (3) choose appro-
priate manipulations for the best use of the structure (Novotná & Hoch, 2008). Using the 
strategy of perceiving structure of the given equation allows the students to effectively con-
nect their various knowledge of mathematics by using appropriate substitution — defin-
ing their own equivalences, they can transform an unknown task into a task that they are 
already able to solve (Gonda et al., 2022). The ability to transform a problem, or part of it, 
is the basis of success in higher mathematics and in problem solving in general (Feikes & 
Schwingendorf, 2008). Research shows that the purposeful inclusion of transformational 
activities in teaching mathematics has a positive effect on the development of students’ 
algebraic thinking (Agoestanto & Sukestiyarno, 2019; Ayalon & Even, 2015; Pedersen, 
2015). It follows from the overview that the substitution concept is a complex concept, and 
it is important to research the way of teaching substitution as an effective method of solv-
ing a wide range of tasks.
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3 � The suggested way of teaching the substitution method

As already mentioned, an essential element of using substitution when solving equa-
tions is recognition of the repeated expression V(x) in the given equation, which allows 
the solver to define their own equivalence in the form V(x) = y. In mathematics, equiva-
lence is expressed by the sign “=”. However, a lot of students hold an operational con-
ception of equal sign, interpreting the sign as “total” or “answer” (e.g., Knuth et  al., 
2006; McNeil, 2008; Rittle-Johnson et al., 2011). The operational concept of “=” sign 
can cause students to reject non-standard equations, such as x − 1 = y. In the same way, 
students reject equality 7 = 2 + 5 because it is “backwards” (Stephens et al., 2022). Thus, 
operational concepts can cause students to perceive the rule xn. xm = xn + m operationally; 
i.e., xn + m is the result of the product xn. xm and not as the equivalence of the expres-
sions xn. xm and xn + m; i.e., terms have the same value and are interchangeable. There-
fore, we recommend dividing the teaching of substitution use in solving equations into 
three phases. In the first phase, we focus on developing the perception of “=” sign as 
the equivalence of two expressions. In the second phase, we focus on the strategy of 
perceiving the structure of the expression, and in the final third phase, we focus on the 
development of transformational skills. We will now describe the three phases of the 
proposed method of teaching the use of substitution in solving equations in more detail.

3.1 � Development of the equivalence concept of the equality of algebraic 
expressions

This phase can be implemented as part of curriculum by modifying algebraic expres-
sions. A common task is e.g., factorize the expression x2 − 1. The result is the notation 
x2 − 1 = (x − 1)(x + 1). Substituting different numbers for variable x, students can convince 
themselves that the expression x2 − 1 has the same value as the expression (x − 1)(x + 1). 
Now we ask them which symbol in the notation of our result expresses this fact. Finally, 
we emphasize that we present equality sign “=” as a symbol that expresses the equiv-
alence of two expressions, i.e., given two different looking expressions have the same 
value and are interchangeable. We then present the students with numerous examples 
from life, where each time we use sign “=” to express the equivalence of different things 
based on their equivalence. For example, in the case of an exchange rate ticket, it is an 
equivalence relation between different currencies, which enables two-way exchange of 
money from one currency to another. Similarly, various mathematical or physical for-
mulas express equivalence between quantities. Mathematical formulas, which are used 
when editing expressions, are also interpreted in the same way. For example, the formula 
xn. xm = xn + m due to the presence of sign “=” is the equivalence of two expressions. Their 
equivalence allows them to be interchanged, and thus this formula is a general guide as 
to how and when it is possible to replace the product of two powers with one. The given 
formula allows us to replace e.g., the expression y2 ∙ y5 by the expression y7, but also y7 
by the expression y2 ∙ y5. At the same time, we can effectively justify why 32 ∙ 35 ≠ 97. 
In this way, we can point out the fact that modification of algebraic expressions does 
not consist only in calculations (as in modification of numerical expressions), but in the 
mutual substitution of equivalent, while the basic equivalences are expressed in formu-
las. We interpreted the call to “modify the expression” to the students as:
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a.	 Discover one of the sides of the “formulaic substitution” and exchange for the other side;
b.	 Create one of the sides of the “formulaic substitution” and exchange it for the other side.

In the simple tasks where it was enough to discover so-called formulaic substitution, 
the students did well with the standard manipulation of expressions. Gradually, we mainly 
included tasks where it was necessary to create one of the sides of “pattern substitution” 
and then replace it with its so-called formulaic equivalent. The purpose of these tasks is to 
support the development of targeted manipulations with expressions. An essential element 
of this phase of teaching the substitution method was the frequent use of examples where it 
was necessary to use formulaic substitutions “both ways”.

3.2 � Perception of the structure of algebraic expressions

In the previous phase, students worked with equivalent expressions, the equivalence of 
which was expressed by “=” sign. The equivalence of the expressions allowed students 
to use substitution when manipulating the expressions. When solving algebraic equations, 
students encountered another form of equivalence, which was not predicted by mathemati-
cal formulas, but was created (defined) by the solver of the given equation. Whether it is 
appropriate to define own equivalence depends on the structure of the given equation. For 
students to consider this possibility, it is necessary that, in addition to operational strate-
gies, they should be able to use the strategy of perceiving the structure of the given equa-
tion (Novotná & Hoch, 2008). Defining own equivalences is an intervention in memorized 
methods of calculation, which are often resistant to changes in students (Knuth et  al., 
2006). In our teaching method, we present the use of substitution as an alternative option 
for solving equations. In doing so, it is important to point out the fact that, based on the 
structure of the given equation, it is sometimes appropriate to define one’s own equiva-
lence, which can make the process of solving the given equation more efficient. Therefore, 
in this phase, we recommend including tasks of the following type:

It would be appropriate for the students to solve the given equation first on their own in 
the already learned way. Usually, students proceed by creating one fraction in both brack-
ets, which they then multiply and after several adjustments obtain the quadratic equation 
x2 + 4x + 3 = 0 − process strategy. By solving it, we obtain a set of solutions of the given 
equation K = {−3; −1}.

Subsequently, through a discussion form with students, the alternative solution to the 
given equation is presented, which is based on the presence of recurring (sub)expression 
x−3

x+2
 . As part of the discussion, we are moving towards the fact that the given expression can 

be considered as one object that can be manipulated. We demonstrate this fact as follows:

The next step on the way to using substitution in solving equations is another consideration 
of the expression — the object x−3

x+2
 . This expression takes on different values, depending on the 

value of the variable x. It is often necessary to manipulate such an object (as a whole) while 
solving a task. Therefore, it is effective to replace this expression (object) with a symbol that 

On the set R solve the equation
(

x − 3

x + 2
− 5

)(

x − 3

x + 2
+ 3

)

= 9.

(

x − 3

x + 2
− 5

)(

x − 3

x + 2
+ 3

)

=

(

x − 3

x + 2

)2

− 5

(

x − 3

x + 2

)

+ 3

(

x − 3

x + 2

)

− 15 =

(

x − 3

x + 2

)2

− 2

(

x − 3

x + 2

)

− 15.
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represents its value. So, at the appropriate moment of solving the task, we use this option by 
writing it in the form

This notation is information that in a certain section of the problem solving, the expres-
sion x−3

x+2
 will be replaced by symbol — variable y, which represents its permissible values. 

In this way, we will let the students know that during the solution of the equations it is 
also possible to define our own equivalences in order to make the solution of the equation 
more efficient. Defining one’s own equivalence when solving equations is called introduc-
ing substitution. Introducing substitution x−3

x+2
= y allows us to pass to the solution of the 

quadratic equation

Its roots are numbers y1 = 6 and y2 = − 4. If we know the permissible values of variable 
y, we also know the permissible values of the expression x−3

x+2
 . By solving the equations

we calculate the corresponding values of unknown x, which are also the solution of the 
given equation: K = {−3; −1}.

In the later part of this phase, tasks were also solved, where a “repeating expression” 
had to be created with suitable modifications. The goal of this phase was for the students 
to pay attention to the structure of the given equation and create a recurring expression 
by appropriate manipulations with the subexpressions, i.e., to use the structure perception 
strategy. For example, when solving the equation

manipulations with sub-expressions with a similar structure were first implemented, the 
aim of which was to create the repeating expression x−1

x+1
:

and subsequently the self-equivalence x−1

x+1
= y was defined.

3.3 � Task transformation using substitution

Transformational skills, which Kieran (2007) classifies as core to school algebra, are linked 
to the use of substitution. In this phase, we expand the possibilities of using substitution to 
students. We use substitution not only to make solving an equation more efficient, but also 
to transform it into another type of equation. The utility of equation transformation can be 
presented in the following pair of examples. Students first solve the equation on the set R:

x − 3

x + 2
= y.

y2 − 2y − 24 = 0.

x − 3

x + 2
= 6 or

x − 3

x + 2
= −4

(

x − 1

x + 1
− 2

)(

x + 1

x − 1
− 1

)

=
1 − x

x + 1

x + 1

x − 1
=

1
x−1

x+1

and
1 − x

x + 1
= −

x − 1

x + 1

(1)

�

√

x −
1
√

x

��
√

x + 1
√

x − 1
+ 4

√

x −

√

x − 1
√

x + 1

�

= 8.
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After solving it, the same students solve the equation on the set R:

First, their success in solving the mentioned equations is evaluated. In the discussion, 
students compare the difficulty of these equations. Then both equations are written on 
the board next to each other and a discussion takes place about the similar structure of 
both equations — the “only” difference is that the expression 

√

x in Eq. (1) was replaced 
by the expression a and thus Eq. (2) was created. Thus, by introducing the substitution 
√

x = a , Eq. (1) was transformed into Eq. (2). This presents students with the possibil-
ity of using substitution to transform the assigned task into another task, the solution of 
which is easier for them. This approach is used in school mathematics primarily when 
solving irrational, logarithmic, exponential, and trigonometric equations, which are 
often transformed into a quadratic or linear equation. It is advisable to develop students’ 
transformational skills by solving various equations with the same solution strategy: (1) 
adjust the equation to a suitable form, (2) transform it into a quadratic or linear equa-
tion by suitable substitution (or in another way). It is important for students to often 
encounter tasks whose solutions include modifications, enabling the transformation of 
the given task into a task that they already know how to solve, because this contributes 
to the development of their algebraic thinking (Ayalon & Even, 2015). One of the goals 
of this part of substitution teaching is the use of transformations to move from the so-
called unsolvable task to solvable task. For example, a process strategy for solving the 
equation

leads to the equation

which is unsolvable at the high school level. By analyzing the structure of the equation, 
it is possible to discover the rewriting of the equation into the form

and after multiplying we get the equation

which contains a repeating expression, and by introducing substitution, we transform 
the problem into solving a quadratic equation.

An essential element of the above-described form of substitution teaching is the com-
parison of the already learned task-solving procedure with the solution procedure in 
which substitution was used. Since it is more challenging for the learner to memorize 
two algorithms simultaneously, comparison tends to suppress simple memorization and 
instead forces the learner to actively engage in understanding the underlying structures 
of the examples presented (Kang & Pashler, 2012; Mitchell et al., 2008). Although this 
approach may lead to more mistakes at the beginning and slow down the learning pro-
cess, it tends to improve long-term knowledge retention and transfer (Rohrer & Pashler, 
2010; Rohrer & Taylor, 2007). At the same time, insight into the structure of the task 
solution procedure allows them to better understand the task transformation.

(2)
(

a −
1

a

)(

a + 1

a − 1
+ 4a −

a − 1

a + 1

)

= 8.

(x + 1)(x + 2)(x + 3)(x + 4) = 1

x4 + 10x3 + 35x2 + 50x + 23 = 0,

(x + 1)(x + 4)(x + 2)(x + 3) = 1

(

x2 + 5x + 4
)(

x2 + 5x + 6
)

= 1,
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4 � Methodology

Pedagogical research took place in selected secondary schools in Slovakia, with the con-
sent of the school management. The goal of the research was to verify whether our sug-
gested method of teaching substitution initiates students’ use of the strategy of perceiving 
the structure of the given equation, i.e., considering using the option to define own equiva-
lence and use it to transform the task. As part of the research, we set research questions:

RQ1: What change in the strategy of solving equations will be caused by our proposed 
method of teaching substitution?

RQ2: How will students react to an alternative way of solving equations for them?
The research sample consisted of first-year students at selected grammar schools in Slo-

vakia aged 15 to 16. By random selection, we divided the students who voluntarily decided 
to participate in the research into two groups: experimental (EG) and control group (CG). 
The experimental group consisted of 47 students and the control group consisted of 82 stu-
dents. Both groups were given a mathematical test (pre-test) before the start of the experi-
ment, which was used to verify the equivalence of EG and CG. The pre-test was conducted 
at the beginning of the school year before the teaching equations. The content of the pre-
test were five standard mathematical tasks, focused on modifying expressions and solving 
linear equations at the level of the elementary school curriculum. Based on the analysis of 
the pre-test results, which is presented in the section Analysis of the research results, we 
consider both groups CG and EG to be equal.

In the suggested way, which is described above, teaching substitution took place in the 
experimental group EG within the thematic units of modifying expressions, quadratic equa-
tions, irrational equations, exponential equations, and logarithmic equations. The experimen-
tal teaching was conducted over the course of 3 months, in the same number of hours as the 
teaching in CG. At the end of the experimental teaching, unstructured (open) interview was 
conducted with randomly selected students from EG (14 students). The interview was aimed 
at finding out whether the students in EG registered a difference compared to the way of 
teaching mathematics that they were used to and what was the essential difference and what 
benefit substitution represents for them, as an alternative way of solving equations.

The teachers in the experimental group were previously trained to teach substitution in 
the way we proposed. One of the authors functioned as a consultant for EG teachers in 
the framework of their preparation for individual lesson teaching. In control group, some 
teachers from selected schools taught substitution in a standard way — as a way of solving 
(algorithm) some equations that correspond to the scheme

The students of control group learned that if the entered equation has the form of Eq. (3), 
then we use the substitution in form y = V(x). Subsequently, students in CG solved equations 
where they used substitution if the given equation contained “repeating expression”, even if it 
did not have the equation form (3). Such two types of equations (often with an instruction in 
the assignment for students to solve the given equation using suitable substitution) are in col-
lections that were used by both teachers and students during classes in CG.

In both groups, mostly the same tasks were solved, but in EG, emphasis was placed 
on the development of the above-described concepts and skills related to the use of 
substitution. In CG, teaching was focused on learning a new method (substitution) for 
solving a certain type of equation.

(3)a(V(x))2n + b(V(x))n + c = 0.
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According to Freudenthal (1986), a student who has gone through the learning pro-
cess cannot generally be assumed to have mastered a new solution method sufficiently 
to be able to reconstruct it. If the student can reconstruct a new way of solving tasks 
even after some time has passed, it can be said that the student has mastered it with 
understanding (Fan & Bokhove, 2014). Therefore, we administered the post-test to 
both groups five months after the end of the experimental teaching. As a criterion for 
the effectiveness of the proposed method of teaching substitution, we chose to compare 
the frequency of using substitution when solving the post-test. Based on the above, we 
expressed the following research hypothesis.

H: Students who undergo the innovative method of teaching substitution use substi-
tution more often when solving mathematical problems.

After 5 months from the end of the experimental teaching (planimetry and struc-
tural geometry were taught at that time), we once again gave the students of both 
groups (EG and CG)  a mathematical test (post-test) focused on solving equations, 
while we again observed for each student, whether they used substitution when solv-
ing the assigned task. All the tasks were selected from the collection of tasks used 
by teachers in both groups during the teaching of solving individual types of equa-
tions. We assumed that students in both groups would solve tasks 1 and 2 mainly by 
using substitution. We expected differences in the frequency of using substitution 
when solving tasks 3 to 5. Solving tasks 4 and 5 without using substitution leads to 
equations, the solution of which is beyond the scope of the secondary school curric-
ulum. Therefore, we were interested in whether students, after reaching an unsolv-
able equation for them, would consider the possibility of transforming the task by 
defining a suitable equivalence.

We also chose the time gap (5 months) from the teaching with the innovative 
method to verify whether the new substitution teaching method affects the students’ 
way of solving tasks even after a long time since its completion. The tasks in the post-
test were also the same for both groups (CG and EG) and are listed in the Appendix.

We used selected statistical methods to analyze the results that the students achieved 
both in the pre-test and in the post-test. Since the assumption of a normal distribution 
of errors in pre-tests and post-tests was not fulfilled, we used a non-parametric method 
— the two-sample Wilcoxon signed rank test — to compare the results achieved by 
CG and EG students. The Wilcoxon two-sample test is used to evaluate the statistical 
significance of the differences between two independent sets as a non-parametric alter-
native to the parametric t-test in cases where the assumptions of using parametric tests 
are not met.

The tested hypothesis for the comparison of the results achieved by CG and EG stu-
dents in both the pre-test and the post-test was the following null hypothesis H0: There 
is no statistically significant difference between the two groups of students (control 
and experimental) regarding the results achieved in pre-test (post-test). We tested the 
null hypothesis against the alternative hypothesis H1, that there is a statistically sig-
nificant difference between the two groups of students (control and experimental) with 
regard to the results achieved in the pre-test (post-test).

We implemented the Wilcoxon two-sample test using the STATISTICA 10 program. 
We evaluated the test results based on the p value, which is the probability of the error 
we made when we rejected the tested hypothesis.
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5 � Analysis of pre‑test and post‑test results

5.1 � Analysis of pre‑test results

As stated in the methodological section, the pre-test tasks were assigned from the cur-
riculum, which the students covered in the classic way. We do not list their assignment 
here, only in Fig. 1 we graphically show the success of both groups.

Using the Wilcoxon two-sample test in the STATISTICA program (Markechová et al. 
2011), we obtained the following results: The value of the test statistic was Z = 0.30 and 
the probability value was p = 0.76. Since the p-value was greater than 0.05, we could 
not reject the null-hypothesis. That means that there was no statistically significant dif-
ference between CG and EG students in the results of the pre-test.

5.2 � Analysis of post‑test results

As part of the post-test, we monitored the method (strategy) used by the students in 
solving the assigned tasks. When analyzing the completed tasks of individual students, 
we recorded whether or not substitution was used.

Figure  2 shows how often students of both groups used substitution when solving 
individual tasks in the post-test.

If we compared the fact of how often CG and EG students used substitutions when solv-
ing individual tasks of the post-test (Fig. 2), we could conclude that when solving the first 
task, we saw that EG students used substitution almost as often as CG students. This is 
because it is the most basic type of problem in school mathematics, the solution of which 
uses substitution. However, in the other tasks of the test, a significant difference could be 
seen in how often students used substitutions when solving the given task — in favor of 
EG. In CG, the process strategy prevailed in the solution. Students tried to transform the 
entered equation into linear or quadratic equation by manipulating the expressions. In task 
3, some students in CG defined the equivalence y = x−1

x+1
 and then solved the equation

(y − 2)(y − 1) =
1 − x

x + 1
.

Fig. 1   Pre-test results. Source: self-made
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We also considered these cases to be the use of substitution, even if they led to the solu-
tion of an equation with two unknowns. A surprising fact was that in task 5 in CG, the fre-
quency of using substitution was higher than in task 4, although that task contained a 
repeating expression (x2 + 4x) and in task 5 the repeating expression had to be created. The 
CG students were able to produce the repeating expression although they used process 
strategy. The process strategy was manifested in the fact that the CG students transformed 
the equation through manipulations into the form 

�

3
√

x
�2

+ 1 = 3
√

x + 3 (Jupri & Sispiyati, 

Fig. 2   Results of the post-test (frequency of use of substitution). Source: self-made

Fig. 3   Example of solving task5 in CG
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2017) and used the substitution when the equation had the form (3). The procedure they 
used is shown in Fig. 3.

In EG, when solving problem  5, students mainly used the adjustment 
x 3
√

x =
3
√

x4 =
�

3
√

x
�4

 and defined the equivalence 3
√

x = y, which corresponded to the 
structure perception strategy.

To verify the statistical significance of the differences between CG and EG, we again 
used the Wilcoxon signed rank test, and we got the following results: the value of the test 
statistic Z = 2.32, the probability value p = 0.020. Since the calculated value p < 0.05, we 
rejected the null hypothesis. It means that EG students statistically significantly more often 
used substitution when solving mathematical problems than CG students. Based on the sta-
tistical analysis results, we concluded that the validity of the research hypothesis was con-
firmed; i.e., the proposed concept of teaching the substitution method had the potential to 
contribute to a more permanent acquisition of the use of substitution in solving equations.

5.3 � Analysis of the results obtained by interviewing students

As part of the conducted interview, EG students expressed the opinion that the method of 
teaching substitution was different for them from the usual mathematics lessons. They saw 
the difference in the fact that a large part of the teaching was carried out in a way that led 
them to “think”, to find the simplest possible solution and to finally evaluate the overall 
solution process. This difference was succinctly expressed by one student who said: “Until 
now I was used to counting in math class, and now I have a headache from thinking.” Dur-
ing the interview, we found out what benefit the substitution teaching represented in the 
experiment. Students’ answers could be summarized in the following areas:

1.	 The need to analyze the assigned task — the students expressed that they did not learn 
how to solve the task, but how to find an effective way to solve the task by thinking about 
it. They were aware that they did not have to automatically assign a learned calculation 
algorithm to the task assignment, but often the task can be transformed so that already 
acquired knowledge is used in the solution. Ivan gave an interesting answer: “I didn’t 
realize until now how important it is to be able to solve quadratic equations well” or 
Janka: “I don’t have to remember so many procedures.”

2.	 Atomization of the task — during the interview, almost all students expressed a certain 
degree of surprise that the task does not have to be solved as a whole but can be solved 
by gradually solving sub-tasks. Jaroslav expressed it succinctly: “It is interesting that 
solving one task means solving several tasks.”

3.	 The interconnectedness of mathematical knowledge — the students stated that they had 
to change their approach to solving the task. Most of them stated that they were aware 
that solving a task did not mean assigning the learning procedure to the task assignment. 
Rather, it was necessary to analyze the assignment and realize which knowledge was 
needed to solve the task. It was the atomization of the task that showed them that some 
sub-tasks from various parts of mathematics were often solved within one task. Thus, 
they would use multiple learned procedures. Student Eva expressed it very succinctly: 
“The assignment is not a barrier that limits the calculation possibilities.”

Overall, the students expressed in the interview that they were satisfied with the method 
of teaching substitution and that it was beneficial for them (72%). Some students (19%) 
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expressed that they were more comfortable with the focus of mathematics lessons on prac-
ticing problem solving procedures. The rest of the students (9%) did not see the difference 
between the usual way of teaching and experimental teaching.

6 � Discussion

Based on the statistical analysis of the post-test, a statistically significant difference was 
shown in the frequency of using substitution when solving tasks. In CG, substitution was 
taught as a method for solving a certain type of equation, one that corresponded to the first 
task of the post-test. When solving this task, up to 93% of CG students used substitution. 
For other tasks that did not correspond to the usual learned scheme for using substitution, 
only 23% of CG students used substitution on average. The majority of CG students did not 
use substitution even if they arrived at a complex or unsolvable equation through manip-
ulations. Considering this finding, we concluded that substitution was not an alternative 
option for them to solve the given equation. At the same time, this finding implied that CG 
students did not examine the structure of the equation during the manipulations. Otherwise, 
they would have “noticed” that through the manipulations they had arrived at an equa-
tion structure that corresponded to the equation they had learned to solve by substitution. 
The analysis of the post-test in CG showed that the students memorized the procedures 
for solving equations, which is, according to Navarro-Ibarra et al. (2017), consequence of 
teaching mathematics based on the transfer of ready-made knowledge. CG students used a 
predominantly procedural strategy, which indicated a formal acquisition of substitution at 
the procedural level, which corresponded to instrumental understanding (Skemp, 1976). 
When solving the post-test tasks, they relied on learned procedures and rules (one of them 
was the rule of when to use substitution), which students often adopted without under-
standing (Fuson et al., 2005) and the necessary insight (Freudenthal, 1986). According to 
Kincheloe (2003), formal education based on the transfer of information from the teacher 
to the students does not contribute to the formation of concepts or to the improvement of 
the ability to solve tasks, which was confirmed in CG. In the experimental group, 100% 
of students used substitution in the “standard task” and in other tasks, an average of 70% 
of EG students used substitution. EG students in some cases solved the task first without 
using substitution. But as soon as they realized that the manipulations they performed led 
to a complicated solution, they went back to entering the equation and, by defining equiva-
lence and subsequent substitution, simplified the solution of the equation. This confirmed 
that EG students adopted substitution as an alternative method of solving equations.

We think that the fact that in EG the tasks in the lesson were aimed at investigating the 
structure of the given equation and their solution in several ways (without substitution and 
with substitution) contributed to this. In this way, the development of the structure percep-
tion strategy was supported in the students.

Flexible use of a new way of solving tasks indicates its acquisition with understanding 
(Fan & Bokhove, 2014; Rittle-Johnson et al., 2015). Acquiring a computational skill with 
understanding corresponds to relational understanding (Skemp, 1976). Based on our exper-
imental findings, we conclude that the proposed substitution teaching methodology has the 
potential to increase students’ success in solving algebraic tasks.

It is also particularly important that the analysis of the interview with the EG students 
showed that the students also perceived the difference between experimental and regular 
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teaching. As part of the experimental teaching, they were encouraged to analyze the task 
and think about the way to solve the assigned task, which are elements of deep learning 
(Marton & Säljö, 1976). Only some students (9%) expressed that they were more comforta-
ble with the usual teaching method, which, according to research (e.g., Boaler, 2015; Fuson 
et al., 2005), was focused on calculations, and such a method of teaching mathematics is 
often preferred by students in secondary schools (Vermetten et  al., 1999). The different 
way of learning substitution between CG and EG students and also the interview analysis 
indicated that the proposed substitution teaching methodology has the potential to change 
the way students learn. This clue could be the subject of further research into the imple-
mentation of the proposed methodology.

7 � Study limitations

Some limitations of our study may have affected our results. Students participated in the 
pedagogical experiment on a voluntary basis. We did not examine the overall mathemati-
cal skills of the research participants before starting the experimental teaching. With the 
pre-test, we only verified whether CG and EG students have the same ability to solve sim-
ple equations. Potentially significant differences in the level of mathematical knowledge 
might have influenced their way of acquiring the substitution. Potentially, further studies 
could examine whether the level of students’ mathematical skills affects the acquisition of 
alternative ways of solving problems. Another limiting factor could have been missing data 
on the preferred learning style of individual participants in the experiment. Our findings 
indicated that the proposed substitution teaching method has the potential to encourage 
students to adopt a deep learning style. It would be beneficial to verify whether teaching 
alternative ways of solving tasks is a suitable way for students of different learning styles 
and supports a deep learning style.

8 � Conclusion

Through the implementation and subsequent analysis of the pedagogical experiment 
results, it was confirmed that the methodology proposed by us for teaching substitution 
method has the potential to increase the level of students’ calculation skills and thereby 
increase their success in algebra. It turned out that the students of the experimental group 
used substitution more often to solve various equations, even after a period of time, and 
they evaluated the proposed method of teaching substitution positively. They identified the 
change in their perception of solving equations as the main benefit. They realized that it 
was not necessary to memorize a large number of calculation algorithms, but thanks to the 
understanding of substitution, it was possible to transform the task, which allowed to sub-
sequently use the learned algorithm. It was confirmed that it was also useful to know that 
when solving a task, a student could go from solving a problem to mathematical investiga-
tion (Vidermanová et al., 2013), searching for a connection between the given problem and 
their knowledge. This way of thinking is based on “mathematical” freedom. It was useful 
for the student to know that during the solution they could perform any mathematically 
permissible operation that enabled them to achieve the partial goal set by them. Interviews 
with students showed that students had no problem with changing their learning style. They 
were comfortable with a teaching method that is based on understanding new knowledge. 



498	 A. Tirpáková et al.

1 3

The knowledge acquired in this way will be remembered by the student for a longer period 
of time and thus their success in solving tasks increases.

Appendix

Post‑test

Task 1. Solve the equation on the set R (x − 5)2 − 7(x − 5) = 44.
Task 2. Solve the equation on the set R 

(

x−3

x+2
− 5

)(

x−3

x+2
+ 3

)

= 9.
Task 3. Solve the equation on the set R 

(

x−1

x+1
− 2

)(

x−1

x+1
− 1

)

=
1−x

x+1
.

Task 4. Solve the equation on the set R 
√

x
2 + 4x + 8 +

√

x
2 + 4x + 4 =

�

2
�

x
2 + 4x + 6

�

.
Task 5. Solve the equation on the set R x.

3
√

x−1

3
√

x
2−1

−
3
√

x
2−1

3
√

x+1
= 4.
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