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A B S T R A C T   

The aim of this research is to revise and substantially extend experimental modelling and control 
of a looped heating-cooling laboratory process with long input-output and internal delays under 
uncertainties. This research follows and extends the authors’ recent results. As several significant 
improvements regarding robust modelling and control have been reached, the obtained results 
are provided with a link and comparison to the previous findings. First, an infinite-dimensional 
model based on mathematical-physical heat and mass transfer principles is developed. All 
important heat-fluid transport and control-signal delays are considered when assembling the 
model structure and relations of quantities. Model parameter values optimization based on the 
measurement data follows. When determining static model parameter values, all variations in 
steady-state measured data are taken into account simultaneously, which enhances previously 
obtained models. Values of dynamic model parameters and delays are further obtained by least 
mean square optimization. This innovative model is compared to two recently developed process 
models and to the best-fit model that ignores the measured variations. Controller structures are 
designed using algebraic tools for all four models. The designed controllers are robust in the sense 
of robust stability and performance. Both concepts are rigorously assessed, and the obtained 
conditions serve for controller parameter tuning. Two different control systems are assumed: the 
standard closed-loop feedback loop and the two-feedback-controllers control system. Numerous 
experimental measurements for nominal conditions and selected perturbations are performed. 
Obtained results are further analyzed via several criteria on manipulated input and controlled 
temperature. The designed controllers are compared to the Smith predictor structure that is well- 
established for time-delay systems control. An essential drawback of the predictor regarding 
disturbance rejection is highlighted.   

1. Introduction 

Heating-cooling loops equipped with a heating power source and a heat sink connected by pipes appear typically in engines used in 
fuel-based power plants [1,2], and in cooling systems of an automotive combustion engine [3,4]. Their complete structures adopt a 
wide range of possible topologies [5]. The heat source and sink components can generally be viewed as heat-exchangers (HXs). 
Numerous academic research, experimental and industrial applications of processes with HXs and their networks have been 
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investigated [6,7], which indicates that these problems attract a broad academic and engineering community. 
Modelling and parameter identification of heating-cooling loops represent challenging research tasks. This fact is mainly due to 

process nonlinearities, signal constraints, time-varying parameters, and also uncertainties. The distributed nature of HXs and their 
loops brings about a necessity for advanced ad-hoc modelling strategies. To name just a few, a combination of distributed-parameter 
HX modelling and a spatial orthogonal-collocation discretization [8], a one-dimensional discretization of heat transfer balance 
equations [9], the conservation of mass and energy principle improved by log-mean-temperature-difference approach [10], or 
simplifying the convective-diffusion equations of the fluid flow [11]. 

The distributed nature of HXs together with fluid-flow latencies in pipelines imply the inevitable existence of the delay phe
nomenon and latencies in the process. Partial differential equations (PDEs) are widely used for HX system modelling based on the 
transport phenomenon mathematical description combined with the heat exchange between fluid and wall [5]. Their solutions include 
time-shifted quantities for particular HXs implicitly. However, many HX models in literature do not consider this non-simultaneous 
effect of quantities when the fluid is transported in pipelines. However, these delays can be very long and represent the most sig
nificant process latencies. For instance, the thermal behavior and importance of fluid flow through long pipelines were studied for 
district heating grids [1] or catalysts in diesel engines [12], yet fluid-flow delays are not considered explicitly. 

Ordinary differential equations (ODEs), taking into account a variable time delay between the inlet and the outlet temperatures, 
were used for the modelling of solar thermal plants in Ref. [13]. A flow-dependent delay caused by the inlet temperature sensor 
position and the temperature-flow delay were considered in the model of a solar desalination plant [14]. When modelling a pipe 
network in a heating system with heating substations, pipe network thermal delay and building thermal inertia delay were determined 
in Ref. [15]. The cross-correlation function was used to estimate the delay values therein. The Hammerstein–Wiener model and a linear 
output-error model for a liquid–liquid HX system were identified in Ref. [16]. A delayed nonlinear parametric-uncertainty model of an 
HX used for pre-heating petroleum via hot water was applied in Ref. [17]. 

These examples motivated by combining ODEs obtained by the application of physical laws and mass transport latencies, however, 
have not considered time-shifted arguments in state or output variables. As looped heating-cooling processes include internal feed
backs, internal delays must also be taken into account next to the input-output ones. Besides the time-shifted quantities expressing 
lumped delays, convolution integrals can be utilized for distributed delays. The solution of these models has infinitely many modes. 
Hence, the models are infinite-dimensional. Although the so-called delay differential equations (DDEs) can be traced almost a century 
back (Volterra [18] already used past states when modelling predator-prey systems) their use in thermal and heating processes became 
attractive to researchers in the 1980s [19,20]. This concept was extended and elaborated more intensively, e.g., by Zhang and Nelson 
[21], who studied the delay effect on a building variable-air-volume ventilating system. Pipe and fluid temperature variations due to 
flow were analyzed in Ref. [22]. The so-called anisochronic modelling principle [23] was utilized when modelling a simple HX 
network. The principle is based on assuming all important process latencies and delays due to energy or fluid-flow (mass) transfer. 
Thermal systems with long ducts with a delay due to the fluid travelling time along the duct were analyzed in Ref. [24]. A general 
solution to the problem with a single duct and time-dependent ambient and inlet temperatures was obtained. The advantages of DDE 
models, ODE, and PDE approaches were discussed and demonstrated on a real solar heating system in Ref. [25]. A DDE model of a 
simple looped heating-cooling system equipped with an electric instantaneous water heater and a recovery waste-heat HX (a radiator 
plus fans) was designed in detail in Ref. [26]. Therein, the anisochronic modelling approach has been utilized for every single 
functional part of the appliance. The parts are interconnected via pipes yielding long input-output and state delays. Model parameters 
were identified in a two-step procedure, where parameters affecting the static gain were determined first, followed by the estimation of 
the rest. A relay-based identification strategy incorporating the so-called dominant spectrum subset of the model was proposed for the 
same appliance and model structure in Ref. [27]. A similar modelling idea was applied to a looped experimental heat transfer setup 
followed by a Krylov-based model order reduction procedure [28]. A very close appliance model was also used in Ref. [29]. 

It is worth noting that a novel modelling approach combining PDEs and DDEs into the so-called delay partial differential equations 
(DPDEs) was proposed for constant [30] and time-varying [5,31] flows recently. It comes from a one-dimensional PDE model that 
includes the transport process and the wall dynamics revealing delays. 

Various control strategies adopting different design methods and tools for looped heating-cooling processes have been investigated 
during the last decades; however, most of them ignored delays in the model or control law design. For instance, the standard 
proportional-integral-derivative (PID) approach was compared to an advanced fuzzy-logic controller for a small heat exchanger 
network in Ref. [32], an adaptive dynamic matrix controller of heat sources constituting as a part of heat distribution systems was 
designed and implemented using a programmable logic controller in Ref. [33]. Thermal management control systems used in the 
automotive industry often neglect delays in the piping. For instance, a nonlinear model predictive controller [34] or a Lyapunov-based 
nonlinear controller [35] were derived for this purpose. 

On the contrary, in large engine cooling loops, district heating, or HX networks, the dynamics is significantly influenced by the 
piping delays [5,36]. A controller based on a delayed infinite-dimensional model of an HX network was designed in Ref. [23]. Therein, 
controller parameters were tuned according to the desired dominant spectrum subset of the feedback control system. An HX system 
was controlled using the model predictive paradigm applied to a higher-order input-output-delay model combined with an artificial 
neural network in Ref. [17]. A fixed-order controller for a reduced-order delayed model of a looped HX laboratory process was derived 
and tested in Ref. [28]. The controller was tuned via the solution of a specific H2-norm optimization problem. Bušek et al. [29] 
proposed a functional-observer state-feedback proportional-integral (PI) controller set by the application of the Ackermann formula, 
equipped with a delayed anti-windup compensator. A laboratory heat transfer set-up model with long delays was controlled therein. 
Model-predictive self-tuning control design of this process was presented in Ref. [37]. The authors used a finite-dimensional model 
with input-output delays. The same appliance was also analyzed by different tools in Ref. [26]. The so-called fine temperature control 
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of a heating-stations pipe network system to reduce energy consumption and carbon emission was proposed in Ref. [15]. Pipe network 
and building inertia thermal delays were included in the design. 

In a recent work [38], an adaptive energy optimization control technique with a disturbance estimator, an energy consumption 
optimization block, a state predictor, and a state tracking controller for an advanced engine thermal management system has been 
proposed. The authors have pointed out that some control strategies [39,40] for looped coolant systems with a long dead time cause a 
large overshoot in temperature control. However, the internal delays were not taken into consideration. Moreover, the presented 
experiment has resulted in a non-zero reference-tracking steady-state error. 

The robust control framework attempts to design and tune a control system sufficiently insensitively to process perturbations, 
model uncertainties, and signal disturbances. Especially, control system stability and a desired performance level should be satisfied. 
Besides advanced and computationally demanding robust control strategies applied to looped heating-cooling systems without 
considering delays in the design explicitly [11,41,42], other methods and results incorporating delayed models have been published. A 
robust temperature controller of a fluid-fluid HX process with uncertainty estimation was proposed in Ref. [43]. Therein, a delay 
induced by the actuator dynamics was considered in simulation tests. Santos et al. [14] designed a model predictive controller based on 
a quadratic program solution for a nonlinear solar collector model, where a robust input-output delay compensation scheme was 
proposed. A combination of the PI controller and the Clegg integrator compensator in the two-step robust temperature control under 
uncertainties and dominant time delay effect on the reset action was investigated in Ref. [44]. The controlled experimental HX system 
used in the food industry was modelled by a set of first-order plus time delay submodels. Using the same dead-time submodel, six 
robust controllers in real-time controlling a laboratory HX with nonlinear and asymmetric dynamics and with process gain, 
time-constant, and time-delay uncertainties were compared in Ref. [45]. The second-order plus time delay model of an HX process was 
used for robust controller design, ensuring stable control performance with model uncertainties in Ref. [46]. The controllers were 
tuned by the celebrated Ziegler-Nichols rules and by H-infinity synthesis. The third-order plus time delay model of a shell-and-tube HX 
was applied to derive, verify, and compare several robust controllers in Ref. [47]. The controllers were benchmarked using the integral 
absolute error (IAE) criterion. A model of a plate HX with a nonlinear static characteristic and time delay was utilized when performing 
a robust fuzzy evolving cloud-based control design [48]. Gupta et al. [16] considered different uncertainties (including that in the 
input-output delay value) in a linear model of a liquid-liquid HX process when deriving parameters of the conventional PID controller 
using the H∞ robustness metric. 

It is worth noting that input-output delay models only (i.e., neither DDEs nor DPDEs) were considered when performing the above- 
given research. Results on advanced control of looped HX processes incorporating delayed infinite-dimensional models [5,28–30], 
however, have not utilized robustness methods and tools in the design explicitly. Moreover, they are mostly mathematically and 
computationally demanding. Recall that infinite dimensionality is natural for HXs and their loops; the former is due to an 
infinite-dimensional solution of PDEs, the latter because of the delay effect of long piping. 

In [39], a control design method based on using algebraic tools [49] in the input-output space satisfying robust stability and 
performance was proposed when controlling the fluid temperature in a laboratory looped heating-cooling process. A 
Two-Feedback-Controllers (TFC) control system structure was used therein. A nonlinear process model derived based on DDEs was 
further linearized in the vicinity of a steady-state operating point for control design aims. Note that the results have been slightly 
refined in Ref. [50] later. The model and its parameters were obtained using a three-step procedure [26]. The second step estimated 
static parameters for each single process submodel separately and the results of each substep were used to determine the parameters of 
the following submodel. Another approach to identifying the model parameters based on the relay-feedback experiment was published 
in Ref. [27]. While the computational and experimental burden was less than in the previous method, worse results were obtained. 
However, the authors hypothesized that despite a low accuracy, the eventual model could be sufficient for control purposes. 

Hence, the presented research has been motivated by gaps in the modelling and control design in the above-mentioned results and 
research questions raised therein. Moreover, the research is driven by a constant effort to develop advanced control techniques to 
reduce energy dependence while maintaining sufficient user comfort. 

The motivation can be summarized as follows:  

a) Using the mathematical-physical modelling via DDEs, the complete set of static parameters can be identified at once employing the 
least-square technique, i.e., not for each submodel separately. The obtained model should better cover and interpolate all the 
measurement variations and uncertainties than the original model [26], which adopted a part-by-part procedure.  

b) Another two process model parameter sets are considered for the control design. First, it is a model that best estimates the nominal 
(unperturbed) process response. Such a model might perform worse robustness despite its better nominal accuracy. Second, the 
best model obtained by the relay-feedback test [27] is assumed. The research question is whether such a model can yield sufficient 
control responses.  

c) The use of the standard simple One-Degree-of-Freedom (1DoF) control system can be compared to the TFC structure. The goal is to 
track the step-wise and linear-wise reference temperature value and asymptotically reject the constant load disturbance using 
algebraic tools. 

L. Pekař et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e18445

4

d) In Ref. [39], the robust performance (that also includes robust stability) was not evaluated in detail. Therefore, the reader should be 
provided with detailed evaluations of all four models.  

e) Both the control systems combined with all four models are benchmarked when real laboratory measurements on the appliance. 
The nominal case and three perturbed cases are considered.  

f) Control target of engine cooling loops is to reach desired temperature levels while it is to reduce heat consumption in HX networks 
[5]. Hence, we consider both criteria when evaluating the experimental results.  

g) As the process model structure includes input-output delay, the thing to ask is to use the well-established Smith predictor dead-time 
compensator [51] as an alternative to 1DoF and TFC. Hence, the Smith predictor controller and its properties are derived. 

The rest of the paper is organized as follows. Section 2 concisely introduces the experimental laboratory appliance and its 
mathematical model via DDEs and auxiliary algebraic relations. Optimized robust model parameters identification is presented in 
Section 3. In addition, the unperturbed best-fit model, the original model [26], and the relay-based model [27] are given to the reader 
in the section as well. Controller structures via algebraic means for 1DoF and TFC control systems are derived in Section 4. Section 5 
provides robust stability and performance conditions and their application to the derived models and control structures, giving rise to 
controller parameter settings. Real laboratory experiment results are displayed and evaluated by several performance measures in 
Section 6. Section 7 concisely links to the Smith dead-time compensator and highlights its drawback. Then the paper is concluded, and 
possible future research is sketched. 

Note that only necessary information is placed in the main text body to be concise. Previously published data and extensive 
mathematical derivations and proofs are given in appendices, or the reader is referred to the literature. The basic used notation is 
summarized in a table. 

2. Laboratory appliance and process model structure 

A concise description of the looped heating-cooling process and the used laboratory test bed follows. A process model based on 
DDEs arising from heat balances and some auxiliary relations is also given to the reader [26,39]. 

2.1. Looped heating-cooling process description 

The looped heating-cooling process is sketched in Fig. 1 [39]. 
The process works as follows [26]: The heating fluid (distilled water here) in the loop is driven by a centrifugal pump controlled by 

the input voltage uP(t). It yields a change in the fluid flow rate ṁ(t) in the piping. The fluid flows through an instantaneous water 
heater, the input power of which is PH(t). The heater outlet temperature of the fluid is ϑHO(t). The fluid then goes via a long 
well-insulated pipeline into a solid-liquid plate-and-fin HX (i.e., a radiator) that serves as a heat sink (let us call it a “cooler” for 
simplicity). The cooler fluid inlet temperature is measured as ϑCI(t). The rate of heat flow depends on the ambient temperature ϑa(t). 
The cooler fluid outlet temperature ϑCO(t) is affected mainly by the input voltage uC(t) of a fan connected to the cooler. The voltage 
value can be controlled continuously, whereas the second fan can only switch on or off. Changes in the heat fluid volume are 
compensated by a small expanse tank placed close to the cooler. Finally, the fluid flows into the pump, which closes the loop. 

2.2. Laboratory appliance appearance and equipment 

The front and back sides of the laboratory appliance realizing the looped heating-cooling process are displayed in Fig. 2. Its 
technical description follows as per the positions indicated in the figure. Note that the reader is referred to Ref. [26] for further details 
about electronics inside the laboratory model, wiring, connection to a PC, and HW and SW equipment on the PC side. 

Fig. 1. Looped heating-cooling process [39].  
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Position 1 A magnetic drive centrifugal pump CM30P7-1 by Johnson continuously controlled by the input voltage within the range 
uP(t) ∈ [0,10] V.  

Position 2 The inlet/outlet valve.  
Position 3 The electric instantaneous water heater continuously controlled with the power range of PH(t) ∈ [0,750] W.  
Position 4 A platinum resistance thermometer Pt1000 by Regmet returning the temperature value at the heater outlet calibrated to 

the range ϑHO(t) ∈ [0,100]. The obtained value is stored and processed with a 14-bit resolution.  
Position 5 The 15 m long insulated coiled copper pipeline.  

Positions 6 and 7: Pt1000 thermometers giving cooler outlet and inlet temperatures ϑCO(t) and ϑCI(t), respectively.  
Position 8 The expansion tank.  
Position 9 The cooler (radiator) where fluid and gas phases interact.  

Position 10 The on/off fan controlled by the transistor-transistor logic (TTL) signal.  
Position 11 The fan continuously controlled by the input voltage uC(t) ∈ [0, 10] V.  
Position 12 The power on/off green-light indicator.  
Position 13 The main switch.  
Position 14 The main switchboard containing a microcontroller, resistance-to-voltage measurement converters, circuit breakers, 

semiconductor relays, and direct current power supplies.  
Position 15 The 25-pin CANON 25 M connector. 

2.3. DDEs-based process model structure 

The modelling procedure based on the deductive principle has three steps [26]: 

Step 1. Every distinct functional part of the process is modelled separately using DDEs based on heat transfer balances and via 
auxiliary algebraic equations expressing static relations of particular quantities. The obtained submodels are then linked via their 
mutual physical quantities due to fluid flow in the piping, which gives rise to delays. The crucial idea here is that all significant delays 
are considered. 

Step 2. Heat transmission coefficients, variables in algebraic relations, and the mass flow rate are identified by steady-state input- 
output measurements, i.e., all derivatives in DDEs are assumed to be zero. 

Step 3. Masses and delays are determined via measured dynamic responses by minimizing integral criteria in the time domain. 

The following equations in this subsection summarize Step 1, whereas, Steps 2 and 3 are solved anew in Section 3 to improve the 
model robustness. Note that the following assumptions are taken into account when modelling: water inside the pipelines and 
functional parts of the process is incompressible; the fluid flow ṁ(t) is constant in any place of the process within a particular time 
instant; the specific heat capacity c (≈ 4175 J kg− 1 K− 1) of the fluid is constant within a range of operating temperatures; the specific 
heat capacity of the piping wall material (copper) is neglected; the dynamics of sensors and actuators is omitted (see also Remark 1). 

The heater dynamics is given by the imbalance between the inlet and outlet fluid heat, the input heat power from the solid surface 
of the heater, and the waste heat leaking through the heater shroud to the ambient environment. The particular DDE reads 

cMH
dϑHO(t)

dt
= cṁ(t)[ϑHI(t − τH) − ϑHO(t)]+PH(t − 0.5τH) − kH(t)

[
ϑHO(t) + ϑHI(t − τH)

2
− ϑa(t)

]

(1)  

where MH means the water mass inside the heater and kH(t) stands for the heat transmission coefficient, the value of which is assumed 

Fig. 2. Laboratory appliance with the looped heating-cooling process [26].  
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to be dependent on PH(t) and ṁ(t) as 

kH(t)=
h0P2

H(t) + h1ṁ2(t) + h2PH(t)ṁ(t) + h3

h4PH(t) + h5ṁ(t)
(2)  

where hi, i = 0, 5 are real-valued constants. 
The duration of the heat fluid flow through the heater is τH. Hence, the delay value 0.5τH in (1) expresses that the heat power acts in 

the middle of the heater. 
The long pipeline between the heater and the cooler can be modelled based on the heat balance and asynchronous effect of fluid 

temperatures on the pipeline inlet and outlet as 

cMP
dϑCI(t)

dt
= cṁ(t)[ϑHO(t − τHC) − ϑCI(t)] − kP

[
ϑCI(t) + ϑHO(t − τHC)

2
− ϑa(t)

]

(3)  

where MP means the water mass inside the long pipeline, kP denotes the heat transmission coefficient (that is considered being a 
constant because of its low value), and τHC means the time during which the fluid goes from the heater outlet to the cooler inlet. Note 
that the arithmetical mean temperature on the right-hand side of (3) agrees with the case that the heat loss is constant along the 
pipeline at a time instant [26]. 

The cooler dynamics is modelled by a DDE analogously to (1) and (3) as 

cMC
dϑCO(t)

dt
= cṁ(t)[ϑCI(t − τC) − ϑCO(t)] − kC(t)

[
ϑCO(t) + ϑCI(t − τC)

2
− ϑa(t)

]

(4)  

where MC means the water mass inside the cooler plates and tubes, τC denotes the fluid-flow transport delay between the cooler inlet 
and outlet, and kC(t) stands for the heat transmission coefficient, the value of which is assumed to be dependent on delayed control 
voltage uC(t). 

kC(t) = c2u2
C(t − τFC)+ c1uC(t − τFC) + c0 (5)  

where τFC is the fan reaction delay taking into account latencies of electronic and mechanical fan parts, and ci, i = 0,2 are real-valued 
constants. Note that the on/off fan (that influences kC(t)) is permanently switched on. 

The mass flow rate is related to uP(t) as follows 

ṁ(t)= π0[uP(t) + π1]
π2 (6) 

in the model where πi, i = 0, 2 are real-valued constants. 
The fluid-flow delay τCH between the cooler outlet and the heater inlet (going through the pump) is modelled via a static relation 

only because of a short distance 

ϑHI(t)= ϑCO(t − τCH) (7) 

that means that heat loss is omitted. 
Fig. 3 displays the effect of particular model variables, quantities, and delays on process time-domain responses. Transfer part 

Fig. 3. The effect of model variables, quantities, and delays on process unit step responses.  
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shapes of unit step responses on ΔPH(t) (close to steady states sϑ⋅) are taken as representatives in the figure. 
Static gains (i.e., also steady-state temperature values) are affected by ṁ(t),ϑa(t),kH(t),kP,kC(t). 
The following notation is used in Fig. 1: 

Δsϑ⋅(t) : =ϑ⋅(t) − sϑ⋅ (8)    

Remark 1 Sensor delays are not considered in the model for several reasons, most of which yield from the fact that model delays are 
estimated based on the measurement, not derived analytically. First, as can be deduced from Fig. 1, almost all delays (except 
for τH and τFC) are relative to time instants when significant shape changes of the characteristics appear. It is sufficient to 
detect the changes, not the temperature values themselves, for the delay values identification. Hence, these changes do not 
depend on sensors’ time constants (≈ 8 s) that are much less than the overall internal delay (≈ 140 s) due to the loop 
closeness. In addition, possible sensor latencies have only a minor effect on the overall dynamics since they act in input- 
output relations only [27]. Last but not least, correct values of dead times are not crucial when experimental controlling 
the process because both delay-evaluation characteristics and controller inputs adopt the same measurement data. 

3. Model parameters identification 

The model parameters identification (see Steps 2 and 3 introduced in Subsection 2.3) is thoroughly revised and reformulated in this 
section, compared to the original result given in Ref. [26]. Recall that parameter values of every single functional part of the process 
were estimated separately therein. Now, let us perform the innovative concept that considers model (1), (2), (3), (4), (5), (6), and (7) at 
once. 

3.1. Static parameters estimation 

Let us call “static” those model parameters that affect the static gain. They remain in (1), (3), and (4) when derivatives vanish after 
substituting algebraic relations (2), (5), (6), and the delay shift (7). 

Consider the following ranges of inputs 

uP(t) ∈ [4, 6], uC(t) ∈ [1, 6],PH(t) = [225, 600] (9) 

The range of uP has been chosen relatively narrow for two reasons. First, the proposed control strategy is valid for constant delays; 
therefore, the flow rate induced by the pump input voltage should not significantly vary, and it ought to stay near the operating point. 
Second, uP does not pose to be the manipulated input. A relatively wide range of uC can serve to verify the robustness properties of the 
proposed control system by performing perturbations. The range of PH values is also wide as it serves as the manipulated input for 
controlling particular fluid temperatures. Besides, these heating power values are not symmetric with respect to the operating point 
but are shifted up. This feature is because of the assumption that heating rather than cooling is required for the process when con
trolling fluid temperature. It is also worth noting that the static characteristics for slightly wider ranges of uP, uC, and PH can be 
estimated using linear extrapolation. 

Steady values of fluid temperatures have been measured for ranges (9), as summarized in Appendix A [26]. Note that the values are 
normalized to the nominal constant ambient temperature of ϑa = 24 ◦C. 

Substitute (2), (5), and (6) into (1), (3), and (4). Set zero derivatives on the left-hand sides of DDEs and let all variables be at their 
steady states (i.e., the delays vanish as well). Then, the set of obtained three nonlinear algebraic equations can be expressed in a 
condensed form 

f(v, p)= 0 (10) 

Table 1 
Computed static model parameters – best results and the original one.  

Parameter Result 1 Result 2 Original 

h0 − 0.3543 − 7.794 × 10− 2 2.4455 
h1 0.4616 1.0002 − 1.7 × 10− 3 

h2 112916.09 1.9799 55940.00 
h3 − 85189.85 1.8835 − 99225.69 
h4 33.1947 − 5.1285 486.788 
h5 − 123.186 − 0.9817 777.692 
π0 5.432 × 10− 3 4.516 × 10− 3 4.186 × 10− 3 

π1 − 3.7155 − 1.6928 0.2593 
π2 3.220 × 10− 2 0.2560 0.3755 
c0 8.9125 9.6322 12.4063 
c1 − 3.003 × 10− 2 − 3.389 × 10− 2 0.8335 
c2 0.2360 0.2560 0.1197 
kP 0.2515 0.2735 0.3525 
‖f(p*)‖2 253.20 282.33 350.28  
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where 0 = (0, 0,…,0)T, vT = (suP
,suC,

sPH,
sϑHO,

sϑCI,
sϑa), and pT = (h0,...,h5,π0,π1,π2,c0,c1,c2,kP). Define by J(v,p) the 3 × 13 Jacobian 

of f(v, p) with respect to p, i.e., each expression on the left-hand side of (10) is subject to partial derivatives according to each element 
in p. 

Each line of measured data in Table A1 constitutes one real-valued vector vi, i = 1, 34. Now define f(p) := [f(v,p)]v=vi ,i=1,34 and 
J(p) := [J(v,p)]v=vi ,i=1,34. Hence, f(p) and J(p) have dimensions of 102 × 1 and 102 × 13, respectively. 

Then, the Levenberg-Marquardt method [52] enables finding the solution of f(p) = 0 iteratively via (11) 

k+ 1p= kp −
[kΓ + kγdiag

( kΓ
)]− 1JT ( kp

)
f
( kp
)
, kΓ= JT ( kp

)
J
( kp
)

(11)  

where k means the iterative step. The method represents a stochastic approximation technique that minimizes the H2 norm of f(p), i.e., 
it solves nonlinear least-square problem (10). 

Since the solution p* = limk→∞
kp significantly depends on the initial estimate 0p and the evolution of the damping factor γ > 0, it 

might not be unique. Table 1 displays the two best solutions obtained numerically, including the original result [26] for comparison. 
We call the mathematical model (1) to (7) with parameter values in the rightmost row of Table 1 the “Original model” hereinafter. 

As can be seen from the table, the approximation error measured by the H2 norm has been reduced compared to the Original model. 
Another advantage is that the results cover a broad spectrum of process perturbations and measurement uncertainties, which is 
beneficial for the further robust control design. On the other hand, it may lead to a worse estimation of the nominal case. 

Nevertheless, Result 1 in Table 1 is unsuitable for robust control design since it enables only a reduced range of pump voltage input 
(i.e., a range of fluid flow values). Namely, it is clear from (6) that whenever uP(t) < − π1, the flow rate ṁ(t) becomes complex-valued. 
That is, Result 1 admits uP(t) ≥ 3.7155 V, which is rather limiting (regardless, it complies with ranges (9)). Therefore, we have selected 
Result 2 in Table 1 for further identification and control in this research. 

3.2. Dynamic parameters estimation 

The so-called “dynamic” parameters influence the transient part of a time-domain response (see Fig. 3). These are masses MH,MP,

MC and all delays τH,τHC,τC,τCH,τFC. The error minimization between the measured and modelled responses can estimate their values. 
However, as the static parameters determined in the preceding subsection lead to incorrect static gain estimation (due to perturba
tions), this gain can be easily adjusted by an additional gain, so that the steady-state values coincide. Nevertheless, such an adjustment 
may harm other decisive parts of the responses indicated in Fig. 3. Therefore, the dynamic parameter values have eventually been 
found for Result 2 of Table 1 based on the following intuitive assumption: 

Assumption 1. Consider a model that matches the nominal responses perfectly. Then, its dynamic parameter values must be optimal 
for the model under perturbations. 

To rephrase Assumption 1, the complete model that fits the measured nominal measured data in the vicinity of some operating 
point optimally is found first. Let us denote this model simply as “Best-fit”. Then, the model partially found in Subsection 3.1 adopts the 
dynamic parameters of the best-fit one. 

As the aim is to use PH(t) as the manipulated input for the control tasks, only responses (of temperatures) to the step change ΔPH(t)
are assumed when finding the best-fit model parameters. Let the objective be the IAE between the measured (ϑ⋅(t)) and modelled 
(ϑ⋅,m(t)) responses 

IAEϑ⋅ : =

∫ t1

t0

⃒
⃒ϑ⋅(t) − ϑ⋅,m(t)

⃒
⃒dt ≈ Δt

∑t1/Δt

k=t0/Δt

⃒
⃒ϑ⋅(k) − ϑ⋅,m(k)

⃒
⃒ (12)  

where Δt is the sampling time. Hence, the cost function of the optimization problem for the best-fit model can be defined as follows: 

min(IAEϑHO + IAEϑCI + IAEϑCO ) (13) 

Let us select the following operating point for the nominal data 
( suP,

suC,
sPH ,

sϑHO,
sϑCI,

sϑCO,
sϑa
)
=(5V, 3V, 300W, 43.22◦C, 43.00◦C, 34.92◦C, 24◦C) (14) 

Table 2 
Computed best-fit dynamic and original models’ parameters.  

Parameter Best-fit Original 

MH 9.338 × 10− 2 8.109 × 10− 2 

MP 2.944 × 10− 2 2.190 × 10− 1 

MC 2.239 × 10− 2 2.717 × 10− 1 

τH 4.61 3 
τHC 102.36 118 
τC 26.25 23 
τCH 8.07 7 
τFC 11.5 12  
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The solution of (13) for t0 = 0 s, t1 = 2000 s,Δt = 1 s using the well-established Nelder-Mead flexible-simplex method [53] yields 
the dynamic parameters provided in Table 2. The table also contains the values of the original model [26]. 

The value of τFC have been found graphically based on the response to ΔsuC(t). Note that other delays can alternatively be found 
based on Fig. 1. That is, the four particular time intervals can also be identified from the measured data, giving rise to τH,τHC,τC,τCH. 

Let us denote by “Model 1” the novel model having static parameters introduced as “Result 2” in Table 1 and dynamic parameters 
provided as “Best-fit” in Table 2. 

The knowledge of nominal delay values and particular modelled relations uP(t) ↦ ṁ(t) enables estimating the operating ranges (or 
possible perturbations) of the delays. Relations (15) express that delays are in inverse proportion to ṁ(t). 

τ⋅,max = τ⋅,nominal
ṁmin

ṁnominal
, τ⋅,min = τ⋅,nominal

ṁmax

ṁnominal
(15) 

The obtained ranges are summarized in Table 3. 

3.3. Model linearization and results comparison 

As the aim of this research is to apply robust control principles for linear systems, nonlinear model (1)–(7) has to be linearized. 

Table 3 
Computed ranges of delays for uP(t) ∈ [4, 6].  

Delay Original Model 1 Best-fit 

τH [2.77, 3.20] [4.25, 4.89] [3.69, 5.53] 
τHC [109.02, 125.97] [94.37, 108.64] [81.88, 122.83] 
τC [21.25, 24.55] [24.20, 27.86] [21.00, 31.50] 
τHC [6.47, 7.47] [7.44, 8.57] [6.46, 9.68]  

Fig. 4. Unit step responses (without static gains adjustment) for ΔsuP(t) (a), ΔsuC(t) (b), and ΔsPH(t) (c).  
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Appendix 2 follows a simple linearization procedure in the neighbourhood of the operating point (14) introduced in Ref. [26]. 
A comparison of unit step responses for input and output variables is displayed in Fig. 4(a–c). Original model, Model 1, and the Best- 

fit model are included for the benchmark. Fig. 5 includes those unit step responses for the unified static gain. As mentioned above, the 
modelled responses can simply be adjusted using an auxiliary gain in practice. 

The figures prove the Best-fit model superiority when matching the nominal step responses. Plots for the Original model and Model 
1 in Fig. 4(a–c) evince significant errors when responding to ΔsuP(t) and ΔsuC(t). The main reason is that both models attempt to cover 
the perturbations and uncertainties, and the nominal case represents only a limited subset of the measured data. It is also partially due 
to the dynamic model parameters have been found based on the response to ΔsPH(t); however, transient parts of responses are esti
mated quite well, as clear from Fig. 5(a–c). Whereas the Original model works better in cases (b) and (c), Model 1 matches the 
measured responses better in case (a). It must, however, be highlighted again that the best matching of the nominal case is not the 
primary goal of these models. 

In [27], various models of the looped heating-cooling process in question were received by a relay-feedback experiment. These 
relay-based models have been computed for relation PH(t) ↦ ϑCO(t) only. It can be deduced from (B.1) that the relation is given by the 
DDE 

Δ
s
ϑ
…
(t) + a2Δs

ϑ̈(t)+ a1Δs
ϑ̇(t)+ a0Δsϑ(t)+ a0DΔsϑ(t − τa)= b0ΔsPH(t − τb) + b0DΔsPH(t − τb − τ0) (16) 

where τ0 = 0.5τH, τa = τH + τHC + τC + τCH, τb = τHC + τC. Four particular models with the best integral measures in the time and 
frequency domains are provided in Table 4. Coefficients of (16) for the Original model, Model 1, and the Best-fit model are also 
included in the table for completeness. Note that this data will be used in the next sections. Surprisingly, although Model 1 adopts the 
dynamic parameters of the Best-fit model, the coefficients of the latter one are closer to the Original model. 

Let the best model (measured by the IAE) in the first column (i.e., Relay 1) of Table 4 be the nominal “Relay model” for control 
purposes. Notice that non-delay coefficients differ from other models significantly, and the internal delay τa is far from the physical one 
of the process. The reason for including the relay-based models is the following. This research question was raised in Ref. [27]: Can the 
process be sufficiently controlled based on the (relatively inaccurate) relay-based model? Hence, a partial goal of this research is to 

Fig. 5. Unit step responses (with static gains adjustment) for ΔsuP(t) (a), ΔsuC(t) (b), and ΔsPH(t) (c).  
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benchmark the model usability in the robust control design against other process models. 
Unit step responses ΔsPH(t) ↦ ΔsϑCO(t) for the Relay model with/without the static gain adjustment are displayed in Fig. 6. Note 

that the IAEs (after the unifying of the static gains, i.e., the steady-state temperatures coincide) for the Original model, Model 1, Best-fit 
model, and Relay model are, respectively, 0.114, 0.098, 0.053, and 0.984. 

A frequency-domain model comparison is made via Nyquist plots; see Fig. 7(a–i) for unadjusted static gain and Fig. 8(a–i) for 
adjusted ones. Note that the actual measured process data was obtained simply by inserting the sinus signal into the particular input (at 
the operation point) and observing the amplitude and phase shift, not via the Fourier series analysis. In the figures, Gij(s) means the 
entry of the transfer function matrix G(s) in (B.1). 

Unadjusted nominal frequency responses for the Best-fit model naturally provide the best matching among all the models. Although 
the shapes of all plots are similar, their scales differ significantly, mainly due to process perturbations that have to be covered. 
Contrariwise, Nyquist plots with adjusted static gains are similar in shape and size in many cases. In Fig. 8(a–i), the Original model and 
Model 1 estimated the measured data well (besides the Best-fit model does). 

4. Controller structure design by algebraic tools 

In this section, the reader is provided with a concise description of the used control system structures, namely, 1DoF and TFC. 
Parameterized control laws are then derived for each structure using algebraic tools introduced in Appendix C. 

The goal is to control ϑCO(t) using the manipulated input PH(t) based on submodel (16). Other external inputs, i.e., uP(t), uC(t),ϑa(t)
are considered being model uncertainties. The transfer function of relation (16) reads 

Gm(s)=
b0 + b0De− τ0s

s4 + a3s3 + a2s2 + a1s + a0 + a0De− τase
− τbs =

b(s)
a(s)

(17)  

4.1. 1DoF and TFC control systems 

The 1DoF control system agrees with the simple negative control feedback loop; see Fig. 9. 
In the figure, r(t), e(t), u(t), d(t), y(t) denote the reference, control error, control action (i.e., the computed manipulated input), load 

disturbance, and the output variables, respectively. The controlled system and controller transfer functions are G(s),CR(s), respectively. 
The TFC scheme displayed in Fig. 10 includes an additional inner feedback loop that may help to stabilize the control system, adjust 

Table 4 
Computed nominal parameters of submodel (16).  

Parameter Relay 1 Relay 2 Relay 3 Relay 4 Original Model 1 Best-fit 

a2 132.0240 1.5388 43.8899 4.4339 0.1722 0.1221 0.1783 
a1 169.0525 40237.93 23948.84 31243.89 8.510 × 10− 3 4.325 × 10− 3 9.412 × 10− 3 

a0 3.060 × 10− 2 − 17.1592 − 3.4535 − 5.054 × 10− 4 1.299 × 10− 4 4.578 × 10− 5 1.497 × 10− 4 

a0D 0.3820 127.4072 92.1380 107.4560 − 7.219 × 10− 5 − 2.308 × 10− 5 − 8.325 × 10− 5 

b0 0.3070 78.6312 − 30.4525 46.3542 − 2.655 × 10− 7 − 2.821 × 10− 7 − 8.928 × 10− 10 

b0D − 0.2935 − 75.0398 33.3415 − 42.8537 2.275 × 10− 6 1.030 × 10− 6 2.278 × 10− 6 

τa 12.11 16.37 4.70 7.06 151 141.28 141.28 
τb 154.78 154.45 117.68 140.66 141 128.60 128.60 
τ0 4.61 3.66 3.65 4.18 1.5 2.31 2.31  

Fig. 6. Unit step responses (with/without static gains adjustment) ΔsPH(t) ↦ ΔsϑCO(t) for the Relay model.  
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Fig. 7. Nyquist plots (without static gains adjustment) of G11 (a), G12 (b), G13 (c), G21 (d), G22 (e), G23 (f), G31 (g), G32 (h), G33 (i).  
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its dynamics or attenuate the disturbance effect by an additional degree of freedom. The transfer function of the controller acting inside 
the inner loop is denoted as CQ(s). 

4.2. Algebraic representation of signals and transfer functions in the control systems 

Algebraic control design in the ring of quasi-polynomial meromorphic functions (RQM) is adopted [49,50]. The reader is referred to 
Appendix C for the ring definition (Definition C.4). The controller design idea is based on the fractional representation of all control 
system transfer functions and signals using RQM. One can write 

r(s) =
Hr(s)
Fr(s)

, d(s) =
Hd(s)
Fd(s)

,G(s) =
B(s)
A(s)

,CR(s) =
R(s)
P(s)

,CQ(s) =
Q(s)
P(s)

,

Fr(s),FD(s),Hr(s),Hd(s),A(s),B(s),Q(s),P(s),R(s) ∈ RQM

(18) 

The following three goals to be satisfied are as follows:  

a) The control system is stable, i.e., all transfer functions are in RQM.  
b) The output asymptotically approaches the reference, i.e., limt→∞y(t) = limt→∞r(t) or limt→∞e(t) = 0 for d(t) = 0, r(t) ∕= 0.  
c) The load disturbance is asymptotically attenuated, i.e., limt→∞y(t) = 0 for d(t) ∕= 0, r(t) = 0. 

4.3. Controller structure design for 1DoF 

The following three lemmas can be proven [49]. 

Lemma 1. Let A(s),B(s) ∈ RQM in (18) be coprime. The 1DoF control system is stable if and only if there exists a coprime pair R(s),

Fig. 7. (continued). 
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Fig. 8. Nyquist plots (with static gains adjustment) of G11 (a), G12 (b), G13 (c), G21 (d), G22 (e), G23 (f), G31 (g), G32 (h), G33 (i).  
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Fig. 8. (continued). 

Fig. 9. 1DoF control system.  

Fig. 10. TFC control system.  
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P(s) ∈ RQM satisfying 

A(s)P(s)+B(s)R(s) = 1 (19)  

Note that a particular solution pair Rp(s),Pp(s) can further be parameterized as 

P(s)=Pp(s) ± B(s)Z(s),R(s) = Rp(s) ∓ A(s)Z(s) (20) 

for P(s) ∕= 0,Z(s) ∈ RMS. 

Lemma 2. The reference is asymptotically tracked if and only if (21) holds 

Fr(s) divides A(s)P(s) (21)   

Lemma 3. The load disturbance is asymptotically rejected if and only if (22) holds 

Fd(s) divides B(s)P(s) (22)  

Now, consider controlled process model (17). A controller that satisfies all three above-given conditions for a linear-wise r(t) and a 
step-wise d(t) (that is a natural demand in practice) has the transfer function 

CR(s)=
m0m1a(s)(r1s + r0)

pnum(s)
(23) 

where 

r1 = 2(m0 + m1)(b0 + b0D) + m0m1[b0τb + b0D(τb + τ0)], r0 = m0m1(b0 + b0D),

pnum(s) = pnum,4s4 + pnum,3s3 + pnum,2s2 + pnum,1(s)s + pnum,0(s), pnum,4 = (b0 + b0D)
2
,

pnum,3 = 2(b0 + b0D)
2
(m0 + m1), pnum,2 = (b0 + b0D)

2[m2
0 + 4m0m1 + m2

1

]
,

pnum,1(s) = m0m1
[
2(m0 + m1)(b0 + b0D)

2
− r1b(s)

]
, pnum,0(s) = m0m1r0[(b0 + b0D) − b(s)]

(24) 

and m0,m1 > 0 are selectable controller parameters. A detailed controller derivation is given in Appendix D. 

4.4. Controller structure design for TFC 

For the TFC structure, the following lemmas hold [39,50]. 

Lemma 4. Let A(s),B(s) ∈ RQM in (18) be coprime. The TFC control system is stable if and only if there exists a coprime pair V(s),
P(s) ∈ RQM satisfying 

A(s)P(s)+B(s)V(s) = 1 (25)  

where V(s) can be written by (26) 

V(s)=R(s) + Q(s) (26) 

A particular solution Vp(s),Pp(s) can further be parameterized as 

P(s)=Pp(s) ± B(s)Z(s),V(s) = Vp(s) ∓ A(s)Z(s) (27) 

for P(s) ∕= 0,Z(s) ∈ RMS. 

Lemma 5. The reference is asymptotically tracked if and only if 

Fr(s) divides A(s)P(s) + B(s)Q(s) (28)   

Lemma 6. The load disturbance is asymptotically rejected if and only if 

Fd(s) divides B(s)P(s) (29)  

Consider a linear-wise r(t) and a step-wise d(t) again. Possible controllers satisfying control feedback stability, asymptotic reference 
tracking, and load disturbance rejection are governed by the transfer function 

CQ(s)=
m3

0a(s)λv1s2

pnum(s)(s + m1)
,CR(s)=

m3
0a(s)[(1 − λ)v1s2 + (v1m1 + v0)s + m1v0]

pnum(s)(s + m1)
(30) 
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where 

v1 = 4(b0 + b0D) + m0[b0τb + b0D(τb + τ0)], v0 = m0(b0 + b0D),

pnum(s) = pnum,4s4 + pnum,3s3 + pnum,2s2 + pnum,1(s)s + pnum,0(s), pnum,4 = (b0 + b0D)
2
,

pnum,3 = 4m0(b0 + b0D)
2
, pnum,2 = 6m2

0(b0 + b0D)
2
,

pnum,1(s) = m3
0

[
(b0 + b0D)

2
− r1b(s)

]
, pnum,0(s) = m3

0r0[(b0 + b0D) − b(s)]

(31) 

and m0,m1 > 0, λ ∈ (0, 1] are selectable controller parameters. Clearly, the TFC control system has one more tunable parameter 
than the 1DoF system (in our case). Moreover, reference tracking and disturbance rejection tasks can be partially solved independently. 
A detailed derivation of the controllers can be found in Appendix E. 

5. Robust stability and performance 

Based on models obtained in Sections 2 and 3, parameters of controllers (23)–(24) and (30)–(31) are set to meet robustness re
quirements. Namely, robust stability and robust performance are considered [54]. Roughly speaking, when these requirements are 
met, the control feedback system remains stable and provides a satisfactory response under process perturbations and model un
certainties. The perturbations are due to all variations of uncontrolled inputs, see (9), and the fluctuation of the ambient temperature 
ϑa ∈ [18, 28] ◦C. Recall that the nominal setting is given by the operating point (14). 

The nominal model transfer function Gm,0(s) have structure (17) with parameters given in Table 4. The set of all perturbed transfer 
functions Gm(s) satisfies unstructured multiplicative uncertainties (32) 

Gm(s)= [1+Δ(s)WM(s)]Gm,0(s) (32)  

where ‖Δ(s)‖∞ ≤ 1 is a stable bounded function. WM(s) expresses a fixed stable weight function of the uncertainty frequency distri
bution and is searched so that inequality 

⃒
⃒
⃒
⃒

Gm(jω)
Gm,0(jω)

− 1
⃒
⃒
⃒
⃒≤ |WM(jω)|, ∀ω ≥ 0 (33) 

is satisfied without an excessive conservativeness. 

Definition 1. The control system is robustly stable if it is stable for Gm,0(s) and remains stable also for all Gm(s). 

Definition 2. The control system satisfies the nominal performance if it holds that 

‖S0(jω)‖∞ ≤‖WP(jω)‖
− 1
∞ ⇔ |S0(jω)|≤ |WP(jω)|− 1

,∀ω ≥ 0 (34)  

where WP(s) is the sensitivity weight function and S0(s) stands for the nominal sensitivity function that agrees with the transfer 
function between r(t) and e(t) for the nominal model Gm,0(s). 

To rephrase Definition 2, inequality (34) expresses that the nominal control system performs “sufficiently well”, as per the selected 
bound 1/WP(s). 

Definition 3. The control system satisfies the robust performance if it is robustly stable and satisfies (34) for all perturbed transfer 
functions Gm(s), i.e., 

‖S(jω)‖∞ ≤ ‖WP(jω)‖
− 1
∞ (35)  

where S(s) means the sensitivity function for the whole set of Gm(s). 
Particular conditions for 1DoF and TFC control systems and their application to the heating-cooling process models and their 

derived controllers follow. 

5.1. Robustness design for 1DoF 

The following lemmas hold for the 1DoF control system under the assumption that Gm,0(s) and Gm(s) have the equal number of poles 
si with Resi ≥ 0 [54]. 

Lemma 7. The control system is robustly stable if and only if 

‖RS1DoF(jω)‖∞ : =‖WM(jω)T0(jω)‖∞ < 1 (36)  

where T0(s) = 1 − S0(s) is the nominal complementary sensitivity function that agrees with the transfer function between r(t) and y(t)
for the nominal model Gm,0(s). 

For 1DoF with controller (23)–(24), it holds that 
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T0(s)=
CR(s)Gm,0(s)

1 + CR(s)Gm,0(s)
=B(s)R(s)=

b(s)
m(s)

m0m1(r1s + r0)

(s + m0)(b0 + b0D)
2 (37) 

with the nominal parameters in Table 4. 

Lemma 8. The control system satisfies inequality (35) and robust stability condition (36) if and only if 

RP1DoF : =‖RS1DoF(jω)‖∞ + ‖S0(jω)WP(jω)‖∞ < 1 (38) 

Note that S0 is given by (39) 

S0(s)= 1 − T0(s)=
1

1 + CR(s)Gm,0(s)
=A(s)P(s)=

a(s)
m(s)

pnum(s)
(b0 + b0D)

2a(s)(s + m0)
=

pnum(s)
m(s)(s + m0)(b0 + b0D)

2 (39) 

Hence, the estimation of WM(s) followed by the selection of WP(s) and testing inequality (38) for the Original model, Model 1, the 
Best-fit model, and the Relay model is presented below. 

Table 5 
Dominant poles of nominal models and computed gains kW in (41) for (34) with 1DoF control system.   

Original Model 1 Best-fit Relay 

si = − a (x 10− 2) − 2.682 − 2.838 − 2.841 − 2.515 
kW 0.2 0.2 0.2 0.22  

Fig. 11. Bode plots of inequality test (33) for the Original model (a), Model 1 (b), the Best-fit model (c), and the Relay model (d). Perturbations (9), 
delay variations as in Table 3, and the ambient temperature range ϑa ∈ [18,28] ◦C are considered (color lines). The eventual upper bounds (40) are 
displayed (thick black line). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 12. Value of RP1DoF, see (38), for the parameter space m0 × m1 = [0.001, 0.02] × [0.001, 0.02] with 1DoF; the Original model (a), Model 1 (b), 
the Best-fit model (c), and the Relay model (d). 

Fig. 13. Value of RP1DoF, see (38), for the extra parameter spaces m0 × m1 = [0.002, 0.004] × [0.05, 0.1] (Model 1) – (a), and m0× m1 =

[0.003, 0.007] × [0.03, 0.2] (Best-fit model) – (b) in 1DoF. 
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Fig. 11(a–d) displays the left-hand sides of (33) upper-bounded by |WM(jω)| that are constructed by virtue of the procedure 
described in [39] (see Section 4 therein). Perturbations (9), the corresponding delay variations in Table 3, and the ranging of the 
ambient temperature ϑa ∈ [18,28] ◦C are taken to calculate the set of all Gm(s). For the Relay model, it is impossible to apply the 
above-given perturbations. Models “Relay2”, “Relay3”, and “Relay4” in Table 4 are taken as modelled perturbations in this case. 

The eventual uncertainty weight functions WM(s) read 

WM,Original(s) =
0.49(121s + 1)2

(322s + 1)(9s + 1)
,W M,

Model1
(s) =

0.6(81s + 1)2

(215s + 1)(7s + 1)
,

WM,Best− fit(s) =
2.2(217s + 1)2

(940s + 1)(38s + 1)
,WM,Relay(s) =

82(30s + 1)
(51s + 1)(0.26s + 1)

(40)    

Remark 2 Conditions (33), (36), and (38) are invariant to a change of the nominal model static gain. That is, whenever G̃m,0(s) =

k0Gm,0(s), then k0 vanishes in these inequalities. 

The following idea is used in the setting of WP(s) in (34). Let si = − a be the dominant pole of Gm,0(s). It is generally suggested to set 
it as the pole of T0(s). I.e., assume the approximation T0(s) ≈ a/(s+a) that agrees with S0(s) ≈ s/(s + a). That is, one can consider the 
upper bound in (34) as WP(s) ≈ (s + a)/s. However, numerical tests have shown that it is impossible to meet the condition; therefore, a 
weaker requirement 

WP(s)≈ kW
s + a

s
, kW ∈ (0, 1) (41) 

is eventually taken, with a sufficient margin on (34). Hence, it is set m0 = m1 = a for the nominal model controller (23)–(24) and kW 

is found so that ‖S0(jω)‖∞ = x‖WP(jω)‖− 1
∞ where x ≈ 0.6 is the selected margin (conservativeness). Table 5 summarizes the obtained 

results on (41). 
Robust performance condition (38) is tested for the parameter space m0 × m1 = [0.001,0.02] × [0.001,0.02] first. Values of RP1DoF 

are displayed in Fig. 12(a–d). 
The Original model returns the minimum value of 0.930 for m0 = 0.003,m1 = 0.018 and the Relay model that of 0.615 at m0 =

0.002,m1 = 0.011, which represents satisfactory results. However, Model 1 returns the minimum value slightly above the perfor
mance border. The Best-fit model gives values much higher than 1. Therefore, two additional tests are performed in Fig. 13(a and b), 
namely, within the subspace m0 × m1 = [0.002,0.004] × [0.05,0.1] for Model 1 and at m0 × m1 = [0.003,0.007] × [0.03,0.2] for the 
Best-fit one. 

In none of the two tests, a significant improvement has been obtained. Model 1 gives 0.987 for m0 = 0.003,m1 = 0.01 that is too 
close to the performance border yet satisfactory. The Best-fit model remains robustly unstable; hence, the robust performance cannot 
be met (the minimum is 2.198 at m0 = 0.006,m0 = 0.2). Besides, higher values of m0,m1 mean faster control responses that usually 
imply excessive overshoots. The eventually selected controller parameters are summarized in Table 6. 

5.2. Robustness design for TFC 

The following lemmas hold for the TFC robust control design under the assumption that Gm,0(s) and Gm(s) have the equal number of 
poles si with Resi ≥ 0 [39,50]. 

Lemma 9. The control system is robustly stable if and only if 

‖RSTFC(jω)‖∞ : =

⃦
⃦
⃦
⃦WM(jω)T0(jω)

(

1 +
CQ(jω)
CR(jω)

)⃦
⃦
⃦
⃦

∞
< 1 (42) 

where the nominal complementary sensitivity function reads 

Table 6 
Selected parameters of controller (23)–(24) based on the robustness tests.  

Parameter\model Original Model 1 Best-fit Relay 

m0 0.003 0.003 0.006 0.002 
m1 0.018 0.1 0.2 0.011  

Table 7 
Computed gains kW in (41) for (34) with TFC control system.   

Original Model 1 Best-fit Relay 

kW 0.15 0.12 0.15 0.17  
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T0(s)=
CR(s)Gm,0(s)

1 + [CQ(s) + CR(s)]Gm,0(s)
=B(s)R(s)=

b(s)
m(s)

m3
0[(1 − λ)v1s2 + (v1m1 + v0)s + m1v0]

(b0 + b0D)
2
(s + m0)(s + m1)

(43) 

with the nominal parameters in Table 4. 

Lemma 10. The control system satisfies inequality (35) and robust stability condition (42) if and only if 

RPTFC : =‖WP(jω)(S0(jω) + RSTFC(jω))‖∞ + ‖RSTFC(jω)‖∞ < 1 (44)  

where S0 is given by (45) 

S0(s)=
1 + CQ(s)Gm,0(s)

1 + [CQ(s) + CR(s)]Gm,0(s)
=A(s)P(s)+B(s)Q(s)

=
a(s)
m(s)

pnum(s)
(b0 + b0D)

2a(s)(s + m0)
+

b(s)
m(s)

m3
0λv1s2

(b0 + b0D)
2
(s + m0)(s + m1)

=
pnum(s)(s + m1) + b(s)m3

0λv1s2

(b0 + b0D)
2m(s)(s + m0)(s + m1)

(45)  

Following the design step from the preceding subsection, uncertainty weight functions WM(s) are given by (40) as well since they do 
not depend on the used control system structure. Contrariwise, the choice of WP(s) can be different. When adopting its form (41), 
Table 7 is eventually obtained. It is worth noting that m0 = m1 = a (see Table 6) has been set again, and the weighting parameter mid- 
value λ = 0.5 in controller (30) is selected. 

As controller (30)-(31) has three tunable parameters, three sets of the robust performance test are made, namely for λ = 0.25, λ =

0.5, and λ = 0.75. 

Fig. 14. Value of RPTFC, see (44), for the parameter space m0 × m1 = [0.001, 0.02] × [0.001, 0.02] with λ = 0.25 and TFC; the Original model (a), 
Model 1 (b), the Best-fit model (c), and the Relay model (d). 

L. Pekař et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e18445

22

Consider λ = 0.25 and m0 × m1 = [0.001,0.02] × [0.001,0.02] first. Fig. 14(a–d) displays values of the left-hand sides of robust 
performance condition (44). 

For the Original model, the minimum value can be found for m0 = 0.009,m1 = 0.001 but a very low parameter value implies a slow 
control response. Note that point m0 = 0.009,m1 = 0.002 returns 0.956. Regarding Model 1, the minimum is 0.9811 at m0 = 0.011,
m1 = 0.001; point m0 = 0.011,m1 = 0.002 gives 0.991 that is, however, close to the performance border. The robust performance of 
the Best-fit model cannot be satisfied again. Its minimum 2.213 is at m0 = 0.006,m1 = 0.02. The Relay model has a minimum 0.986 at 
m0 = 0.002,m1 = 0.02 and returns the value 0.999 for m0 = 0.0065 m1 = 0.002, which attacks the border. 

Based on the above-given data and Fig. 12(a–d), let us compute values for selected models in other subspaces. Namely, region m0×

m1 = [0.005,0.011] × [0.05,0.17] is explored for the Original model, m0 × m1 = [0.005,0.011] × [0.05,0.35] for Model 1, and m0×

m1 = [0.002,0.006] × [0.03,0.15] for the Relay model. The corresponding results are provided in Fig. 15(a–c). 
The found minima are the following: 0.976 at m0 = 0.008,m1 = 0.17 for the Original model, 0.956 at m0 = 0.008,m1 = 0.3 for 

Model 1, and 0.674 at m0 = 0.002,m1 = 0.15 for the Relay model. Simulations, however, have proven that high values of m1 (with 
regard to the process dominant time constant) give aggressive control responses with high overshoots. 

Now, assume λ = 0.5 and m0 × m1 = [0.001,0.02] × [0.001,0.02]. Values of the left-hand sides of (44) are given in Fig. 16(a–d). 
The observed minima and some other selected subspace points and values are as follows: The Original model returns 0.951 at m0 =

0.011,m1 = 0.001, and 0.969 at m0 = 0.011,m1 = 0.002; Model 1 gives 0.937 at m0 = 0.011,m1 = 0.001 and 0.948 at m0 = 0.011,
m1 = 0.002; the Best-fit model is far beyond the robust performance border with 2.217 at m0 = 0.006,m1 = 0.02; and the Relay model 
returns 0.990 at m0 = 0.006,m1 = 0.002. 

It is worth noting that the robust performance problem with the Best-fit model cannot be solved by a less conservative selection of 
WP(s) as the problem is caused by the robust-stability term in (44). 

Again, let us attempt to inspect also other parameter subspaces. Namely, region m0 × m1 = [0.005,0.011] × [0.05,0.17] is explored 
for the Original model, m0 × m1 = [0.005,0.011] × [0.05,0.35] for Model 1, and m0 × m1 = [0.002,0.006] × [0.03,0.15] for the Relay 

Fig. 15. Value of RPTFC, see (44), for the extra parameter spaces with λ = 0.25 and TFC; the Original model (a), Model 1 (b), and the Relay 
model (c). 
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model. The corresponding data are provided in Fig. 17(a–c). The found minima are the following: 0.977 at m0 = 0.008,m1 = 0.17 for 
the Original model, 0.957 at m0 = 0.008,m1 = 0.3 for Model 1, and 0.675 at m0 = 0.002,m1 = 0.15 for the Relay model, which are 
data very similar to those of λ = 0.25. 

Finally, let λ = 0.75 be taken. Results of (44) for m0 × m1 = [0.001,0.02] × [0.001,0.02] are given in Fig. 18(a–d). 
The Original model returns the minimum 0.982 at m0 = 0.011,m1 = 0.001 but point m0 = 0.011,m1 = 0.002 has a value of 1.004 

that does not satisfy (44). Model 1 gives 0.983 at m0 = 0.016,m1 = 0.002, while point m0 = 0.011,m1 = 0.002 returns a worse value 
of 0.984. The Best-fit model is far beyond the robust performance border again (with a minimum value of 2.221 at m0 = 0.006,m1 =

0.02). Finally, the Relay model returns 0.889 at m0 = 0.006,m1 = 0.001; however, the adjacent point m0 = 0.006,m1 = 0.002 has an 
unacceptable value of 1.004. 

Some other parametric space regions have been computationally explored again, providing better performance values according to 
(44); however, due to a high control action and a high-speed control action are not suitable for the eventual control experiments. Note 
that particular robust performance measure values are similar to those for λ = 0.25 and λ = 0.5. 

Based on the analysis above, the parameters of controller (30)-(31) provided to the reader in Table 8 have eventually been chosen 
for further laboratory control experiments. 

6. Laboratory control experiments 

Experimental verification of robust controllers designed in Sections 4 and 5 for the 1DoF and TFC control systems follows. The 
nominal case and several perturbations are considered. The received responses are then evaluated using some performance measures. 

Denote controlled plant inputs and outputs by u(t) = ΔsPH(t), y(t) = ΔsϑCO(t), respectively, for simplicity. That is, the zero input- 
output values agree with the steady state (14). It i.a. means that the feasible range of u(t) is [− 300,450] W. The reference signal is 
selected as follows: r(t) = 0 (i.e., PH(t) = 34.92 ◦C) for time intervals [0,200), [4200,8200), and [20200,28000] s, r(t) = 7 (i.e., PH(t) =

Fig. 16. Value of RPTFC, see (44), for the parameter space m0 × m1 = [0.001, 0.02] × [0.001, 0.02] with λ = 0.5 and TFC; the Original model (a), 
Model 1 (b), the Best-fit model (c), and the Relay model (d). 
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41.92 ◦C) for time intervals [201,4200) and [12200,16200) s, r(t) is linearly increasing from 0 to 7 within the interval [8200,12200) s 
and decreasing within [16200,20200) s. The constant load disturbance of d(t) = d = − 50 W enters at t = 24200 s, and it can represent 
power fluctuations of the electronic control circuit or a general ambiance effect. 

6.1. Control responses for 1DoF 

The nominal responses of u(t) and y(t) are displayed in Fig. 19(a and b). Now, consider a perturbation of uP(t) = 4 V (instead of the 
nominal value uP(t) = 5 V). Then, the corresponding control responses are provided in Fig. 20(a and b). Note that such a perturbation 
significantly impacts process delays. Let another process perturbation be uC(t) = 4 V (instead of the nominal value uC(t) = 3 V), see 
Fig. 21(a and b). Finally, let us test a decreased ambient temperature ϑa(t) = 21 ◦C (instead of the nominal value ϑa(t) = 24 ◦C) ensured 
by a room thermostat; see Fig. 22(a and b). 

6.2. Control responses for TFC 

The nominal responses of u(t) and y(t) for λ = 0.3 and λ = 0.7 are displayed in Fig. 23(a and b) and Fig. 24(a and b), respectively. 
Responses for the perturbed case uP(t) = 4 V with λ = 0.3 and λ = 0.7 are given in Fig. 25(a and b) and Fig. 26(a and b), respectively. 
Control performance under perturbation uC(t) = 4 with λ = 0.3 and λ = 0.7 are displayed in Fig. 27(a and b) and Fig. 28(a and b), 
respectively. Finally, control responses under the ambient temperature perturbation ϑa(t) = 21 ◦C for λ = 0.3 and λ = 0.7 are displayed 
in Fig. 29(a and b) and Fig. 30(a and b), respectively. 

Fig. 17. Value of RPTFC, see (44), for the extra parameter spaces with λ = 0.5 and TFC; the Original model (a), Model 1 (b), and the Relay model (c).  
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6.3. Experimental results evaluation 

Several metrics are used for the evaluation of the control responses. Besides the IAE (12), output temperature overshoots/un
dershoots (Δymax) are measured, and three forms of the total variation (TV) are computed [55,56] to evaluate the monotonicity and 
deviation from it. 

Controlled outputs are subject to an adjusted TV (denoted by TV1 here in (46)) that expresses the difference between the total signal 
path and the minimum possible path required to change the signal from the initial state yk0 to the final state yk1 : 

TV1(y)=
∑k1 − 1

k=k0
|yk+1 − yk| −

⃒
⃒yk1 − yk0

⃒
⃒ (46) 

It holds that the value of TV1(y) equals zero for monotonic outputs. 

Fig. 18. Value of RPTFC, see (44), for the parameter space m0 × m1 = [0.001, 0.02] × [0.001, 0.02] with λ = 0.75 and TFC; the Original model (a), 
Model 1 (b), Best-fit model (c), and the Relay model (d). 

Table 8 
Selected parameters of controller (30)-(31) based on the robustness tests.  

Model\parameter λ m0 m1 

Original 0.3 0.01 0.002  
0.7 0.011 0.001 

Model 1 0.3 0.011 0.002  
0.7 0.016 0.002 

Best-fit 0.3 0.006 0.02  
0.7 0.006 0.02 

Relay 0.3 0.005 0.002  
0.7 0.006 0.001  
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Fig. 19. Control responses of u(t) (a) and y(t) (b) for the 1DoF nominal case in the neighbourhood of the operating point (14).  

Fig. 20. Control responses of u(t) (a) and y(t) (b) for the 1DoF perturbed case with uP(t) = 4 V.  

Fig. 21. Control responses of u(t) (a) and y(t) (b) for the 1DoF perturbed case with uC(t) = 4 V.  
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Fig. 22. Control responses of u(t) (a) and y(t) (b) for the 1DoF perturbed case with ϑa(t) = 21 ◦C.  

Fig. 23. Control responses of u(t) (a) and y(t) (b) for the TFC nominal case with λ = 0.3 in the neighbourhood of the operating point (14).  

Fig. 24. Control responses of u(t) (a) and y(t) (b) for the TFC nominal case with λ = 0.7 in the neighbourhood of the operating point (14).  
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Fig. 25. Control responses of u(t) (a) and y(t) (b) for the TFC perturbed case with uP(t) = 4 V and λ = 0.3 in the neighbourhood of the operating 
point (14). 

Fig. 26. Control responses of u(t) (a) and y(t) (b) for the TFC perturbed case with uP(t) = 4 V and λ = 0.7 in the neighbourhood of the operating 
point (14). 

Fig. 27. Control responses of u(t) (a) and y(t) (b) for the TFC perturbed case with uC(t) = 4 V and λ = 0.3 in the neighbourhood of the operating 
point (14). 
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Fig. 28. Control responses of u(t) (a) and y(t) (b) for the TFC perturbed case with uC(t) = 4 V and λ = 0.7 in the neighbourhood of the operating 
point (14). 

Fig. 29. Control responses of u(t) (a) and y(t) (b) for the TFC perturbed case with ϑa(t) = 21 ◦C and λ = 0.3 in the neighbourhood of the operating 
point (14). 

Fig. 30. Control responses of u(t) (a) and y(t) (b) for the TFC perturbed case with ϑa(t) = 21 ◦C and λ = 0.7 in the neighbourhood of the operating 
point (14). 
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The basic TV (denoted by TV0 here in (47)) 

TV0(u)=
∑k1 − 1

k=k0
|uk+1 − uk| (47) 

is used to control action u(t) in those intervals, where the reference signal is linear-wise, as another one 

TV2(u)=
∑k1 − 1

k=k0
|uk+1 − uk| −

⃒
⃒2uextr − uk1 − uk0

⃒
⃒ (48) 

is applicable for a step-wise r(t), where uextr is an extreme value lying uextr ∕∈ (uk0 ,uk1 ), i.e., outside the interval given by the initial 
and final values. TV2(u) in (48) expresses the deviation from an ideal single-pulse waveform (composed of two monotonic intervals) 
based on the Feldbaum theorem [55]. TVs for the control action mean the control effort, which, i.a., corresponds to the actuators’ 
lifetime. 

In addition, the integral of PH(t) is evaluated 

EC(PH)=Δt
∑k1 − 1

k=k0
PH,k (49)  

since (49) represents energy consumption, which is closely related to a very topical issue of sustainability and energy saving. 
To evaluate the effects of step-wise and linear-wise reference changes, their increase and decrease, and the impact of load 

disturbance separately, let us calculate the performance measures for five disjoint time intervals: 

I1 ∈ [200, 4200)s, I2 ∈ [4200, 8200)s, I3 ∈ [8200, 16200)s, I4 ∈ [16200, 24200)s, I5 ∈ [24200, 28000)s (50) 

Then, particular k0 and k1 correspond to the initial and final values, respectively, of intervals (50). Notice that I5 serves only to the 
evaluation of the disturbance effect. Besides, the total IAE and EC for y(t) and PH(t), respectively, are calculated. 

The results are summarized in Table F1 (1DoF), Table F2 (TFC, λ = 0.3), and Table F3 (TFC, λ = 0.7) that can be found in Appendix. 
Note that the values of EC(PH) are in kWh in the tables. 

Let us select some distinct observations from the data. Regarding the 1DoF control system, relatively high values of m0 or m1 (see 
also Table 6) yield a chattering of u(t), which results in enormous values of TV0(u) and TV2(u), and also higher overshoots/un
dershoots. Model 1 and the Best-fit models give low IAEs in the nominal case, but the latter causes a high overshoot after the reference 
step change. The Best-fit model also provides the best output reaction to the load disturbance (IAE and Δymax). On the other side, this 
model is susceptible to perturbations (compared to the other models), which confirms the hypothesis that an almost exact nominal 
model might not be useful for robust control design and real-world control under uncertainties. The change of uP represents the most 
distinctive perturbation, mainly due to the change of delays (see Table 3). On the contrary, the responses are almost insensitive to an 
ambient temperature change. The data shows that Model 1 provides excellent responses under perturbations. Surprisingly, despite 
high IAEs given by low m0,m1, the Relay model proves to be sufficient enough for control objectives. An unpleasant effect of per
turbations and “fast” controller settings is the existence of the wind-up effect on u(t) that reaches its physical limits. Notice that the 
Best-fit model causes the wind-up even in the nominal case (Fig. 19(a,b)). There exist several principles to tackle this problem, e.g., a 
functional approach for time-delay systems [29]. This problem represents one of the tasks of our future research. 

Regarding the TFC control system with λ = 0.3, IAEs for the Original model give better values compared to 1DoF for step-wise 
reference changes; however, it does not hold for other models. Contrariwise, Model 1 and the Relay model yield lower IAEs when 
linear-wise reference tracking. A significant undesirable effect of TFC is an increase in overshoots/undershoots after a step change of 
r(t). Hence, the suggestion here is to use a filtered reference signal without abrupt changes in practice. In the cases of the Original 
model and Model 1, a better response to the load disturbance can be observed. An interesting observation can be made on the energy 
consumption: Its value seems almost invariant to the used model and control system and depends solely on a particular perturbation. 

The setting λ = 0.7 brings about higher IAEs but lower overshoots after the reference change compared to λ = 0.3. Contrariwise, 
IAEs given be a reaction to the disturbance are better. Overall, the TFC control system cannot be indicated as better compared to the 
1DoF structure. However, the possibility of tuning λ value brings more options when finding a trade-off between reference tracking and 
disturbance rejection. 

Fig. 31. Smith predictor.  
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7. Link to the Smith predictor 

Finally, let us concisely compare to the well-establish Smith dead-time compensator [51]. As the process model structure (16)–(17) 
includes the input-output delay, such a comparison can be made. We also point out a significant drawback of this approach. 

The Smith predictor structure is depicted in Fig. 31. 
In the scheme, Gm0(s) means a process model transfer function without the input-output delay. This modelled delay (i.e., its 

estimation) is represented by block e− τms. The Smith-predictor controller has transfer function CSm(s). Two research questions arise:  

1) What is the relation between CSm(s) and CR(s), CQ(s)?  
2) Does CSm(s) work well? 

For the 1DoF control system, the following relation can be derived based on the matching of reference-to-output transfer functions 
(i.e., T(s)) 

CSm,1DoF(s)=
CR(s)

1 − CR(s)Gm0(s)(1 − e− τs)
(51) 

See Appendix F for a sketch of the proof. Note that controller CR(s) is given by (23)-(24) 
For the TFC control system, the analogous matching yields 

CSm,TFC(s)=
CR(s)

1 − CR(s)Gm0(s)(1 − e− τs) + G(s)CQ(s)
(52) 

The reader is referred to Appendix F again. Transfer functions of controllers CR(s), CQ(s) for the heating-cooling process in question 
can be found in (30)-(31). 

It is worth noting that whereas (51) is independent of the actual process dynamics, controller (52) also depends on G(s). It implies 
that the agreement of TFC and the Smith predictor depends on an accurate estimate of the process dynamics. 

Settings (51) and (52), however, bring about a significant drawback of this design: 

Theorem 1. The use of the Smith predictor with controllers (51) and (52) for process models (23)-(24) and (30)-(31), respectively, cannot 
guarantee an asymptotic linear-wise load disturbance rejection. 

Proof of Theorem 1 can also be found in Appendix G. It is worth noting that the designed 1DoF control system rejects the linear-wise 
disturbance; however, TFC does not, as indicated in the appendix as well. 

8. Conclusions 

A detailed modelling, identification, and control study has been presented in this paper. A laboratory looped heating-cooling 
system with significant input-output and internal delays has been considered as the process in question. A thorough revision and 
reformulation of the model parameters identification procedure have been designed, resulting in a novel process model reflecting 
process and measurement uncertainties and perturbations. Besides, an accurate nominal model has been assembled as well for 
comparison. The control design has included a controller structure derivation for two different control systems, namely the 1DoF and 
the TFC structures, and the application of robust stability and robust performance conditions in detail. As a result, suitable controller 
parameter settings have been obtained. Laboratory experiments have proven the applicability of the controllers proposed based on the 
robust model in the nominal case and for several process perturbations. Moreover, comparisons to some other alternative models have 
been made. Namely, a controller designed based on a model obtained from a recent relay-feedback experiment has also proven to be 
capable of controlling the process under perturbations and a load disturbance. Contrariwise, a controller that best matches the nominal 
process data could not meet the robust performance conditions. A link to the well-established Smith dead-time compensator has 
concisely been introduced, and issues with process model estimation and disturbance attenuation have been highlighted. 

The main findings of this research can be summarized as follows:  

1) The static-parameter approximation error of the proposed model (Model 1) is less than the Original model.  
2) Operating ranges of process delays have been estimated based on the dynamic-parameter identification for all considered 

models.  
3) The Relay model has evinced the worst dynamic responses when matching the measured data.  
4) The Best-fit model could not meet the robust stability and robust performance conditions for both control system structures. 

Model 1 has been very close to the borders for the 1DoF control system.  
5) The Original and Relay models have satisfied the robust performance condition for slow control response settings in the TFC 

structure.  
6) The Original model has given better step-wise reference with the TFC structure than the 1DoF scheme.  
7) The Best-fit model matching the nominal step responses most accurate has provided poor robust control performance and could 

not be used for real-world control under uncertainties.  
8) Relay model has proven to be sufficient enough for control purposes.  
9) Model 1 has resulted in a lower IAE when linear-wise reference tracking with the TFC control system. 
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10) TFC has improved a load disturbance response but increased overshoots/undershoots after a reference step change compared to 
1DoF.  

11) The change of the pump input voltage has represented the most distinctive perturbation, mainly due to the change of delays.  
12) Overall energy consumption has remained almost invariant to the used model and control system and depended only on 

perturbations.  
13) The value of λ can serve as a tuning knob to reach a trade-off between reference tracking and disturbance rejection.  
14) The analogous Smith predictor could not satisfy asymptotic linear-wise load disturbance rejection. 

Possible future research can concern overshoot reduction (e.g., based on a model predictive control framework), anti-wind-up 
protection, a multivariable control design [57], or the use of a multiloop control system (with the auxiliary controlled variable), or 
the implementation of advanced parameter optimization techniques when identification [58]. In any case, we are motivated by a 
constant effort to create advanced modelling and control techniques to reduce energy dependence while maintaining sufficient user 
comfort. 
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Appendix A  

Table A.1 
Measured steady-state temperature values for various constant inputs (ϑa = 24 ◦C).  

suP (V) suC(V) sPH(W) sϑHO(◦C) sϑCI(◦C) sϑCO(◦C) 

4 2 300 44.95 44.80 36.20 
4 2 450 57.33 57.20 45.95 
4 3 225 39.95 39.70 33.20 
4 3 300 43.05 42.80 34.30 
4 3 375 48.10 47.90 37.10 
4 3 400 51.20 50.80 37.70 
4 4 300 41.25 41.10 32.40 
4 4 375 47.40 47.20 36.40 
5 1 225 41.90 41.60 35.40 
5 1 300 47.46 47.19 39.37 
5 1 375 52.97 52.70 42.77 
5 2 225 38.98 38.80 32.44 
5 2 300 44.75 44.40 36.55 
5 2 450 57.10 56.80 46.30 
5 3 225 38.65 38.60 32.10 
5 3 300 43.22 43.00 34.92 
5 3 375 45.50 45.50 34.80 

(continued on next page) 
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Table A.1 (continued ) 
suP (V) suC(V) sPH(W) sϑHO(◦C) sϑCI(◦C) sϑCO(◦C) 

5 3 400 52.00 51.70 40.10 
5 3 450 55.20 54.90 44.20 
5 3 525 61.50 61.00 48.70 
5 3 600 67.40 66.70 54.40 
5 4 225 37.35 37.25 30.77 
5 4 300 41.74 41.50 33.35 
5 4 400 45.60 45.40 33.10 
5 5 300 40.80 40.60 32.40 
5 5 450 50.40 50.10 39.00 
5 6 225 35.10 35.05 28.10 
5 6 300 40.56 40.37 32.11 
6 2 300 45.00 44.75 37.00 
6 3 225 38.55 38.53 32.80 
6 3 300 43.30 42.80 35.20 
6 3 375 48.46 48.09 38.64 
6 3 400 49.40 49.10 39.40 
6 4 300 41.30 41.30 33.10  

Appendix B 

Consider the difference output representation (8) and 

Δsu⋅(t) : = u⋅(t) − su⋅,ΔsPH(t) := PH(t) − sPH 

for the operation point (14), and introduce the notation 

Δu(t) : =
(
ΔsuP(t),ΔsuC(t),ΔsPH(t)

)T
,Δϑ(t) : =

(
ΔsϑHO(t),ΔsϑCI(t),ΔsϑCO(t)

)T 

Let ϑa(t) = ϑa = sϑa = 24 = const., which i.a. means that the ambient temperature is considered to be a model parameter with the 
given nominal value, not a disturbance input. This option is further used when performing robustness tests. 

Apply the simple linearization rule 

d
dt

Δϑj(t)≈
∑3

i=1

∂
∂ui(t)

dui(t)
dt

⃒
⃒
⃒
⃒

Ω
Δui(t), j= 1, 3 

for DDEs (1), (3), and (4) after substituting the algebraic formulae (2), (5), (6), and the delayed relation (7), where Δϑj(t) stands for 
entries of Δϑ(t) and Δui(t) that of Δu(t). Symbol Ω represents the operating point (14). Then, the following linearized state-space 
model is received [26] 

d
dt

Δϑ(t)=A0Δϑ(t)+AHΔϑ(t − τH)+ACΔϑ(t − τC)+ACHΔϑ(t − τCH − τH)+B0Δu(t)+BHΔu(t − 0.5τH) + BFCΔu(t − τFC)

in which the matrices read 

A0 =

⎛

⎜
⎜
⎝

A1 0 0

0 A2 0

0 0 A3

⎞

⎟
⎟
⎠,AH =

⎛

⎜
⎜
⎝

0 0 0

A4 0 0

0 0 0

⎞

⎟
⎟
⎠,AC =

⎛

⎜
⎜
⎝

0 0 0

0 0 0

0 A5 0

⎞

⎟
⎟
⎠,ACH =

⎛

⎜
⎜
⎝

0 0 A6

0 0 0

0 0 0

⎞

⎟
⎟
⎠,

B0 =

⎛

⎜
⎜
⎝

B1 0 B2

B3 0 0

B4 0 0

⎞

⎟
⎟
⎠,BH =

⎛

⎜
⎜
⎝

0 0 B5

0 0 0

0 0 0

⎞

⎟
⎟
⎠,BFC =

⎛

⎜
⎜
⎝

0 0 0

0 0 0

0 B6 0

⎞

⎟
⎟
⎠

where thwith static gains adjustmente entries are 
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A1 = −
1

MH

[

π0
( suP + π1

)π2
+

h1π2
0

( suP + π1
)2π2

+ π2π0
( suP + π1

)π2 sPH + h0
( sPH

)2
+ h3

2c
(
h5π0

( suP + π1
)π2

+ h4
sPH
)2

]

,

A2 = −
1

cMP

[
cπ0
( suP + π1

)π2
+ 0.5kP

]
,A3 = −

1
cMP

[
2cπ0

( suP + π1
)π2

+ c2
( suC

)2
+ c1

suC + c0

]
,

A4 =
1

cMP

[
cπ0
(
us

P + π1
)π2

− 0.5kP
]
,A5 =

1
cMP

[
2cπ0

( suP + π1
)π2

− c2
( suC

)2
+ c1

suC + c0

]
,

A6 =
1

MH

[

π0
( suP + π1

)π2
−

h1π2
0

( suP + π1
)2π2

+ h2π0
( suP + π1

)π2 sPH + h0
( sPH

)2
+ h3

2c
(
h5π0

( suP + π1
)π2

+ h4
sPH
)2

]

,

B1 =
π0π2

( suP + π1
)π2 − 1

MH

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sϑHI −
sϑHO +

(sϑHI +
sϑHO

2
− ϑa

)

(
− h1h5π2

0

( suP + π1
)2π2

− 2h1h4π0
( suP + π1

)π2 sPH + (h0h5 − h2h4)
( sPH

)2
− h3h5

c
(
h5π0

( suP + π1
)π2

+ h4
sPH
)2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

B2 = sϑHI −
sϑHO +

(sϑHI +
sϑHO

2
− ϑa

)[
(h1h4 − h2h5)π2

0

( suP + π1
)2π2

− 2h0h5π0
suP
( suP + π1

)π2 sPH − h0h4
( sPH

)2
+ h3h4

c
(
h5π0

( suP + π1
)π2

+ h4
sPH
)2

]

,

B3 =

( sϑHO − sϑCI
)
π2π0

( suP + π1
)π2 − 1

MP
,B4 =

( sϑCI −
sϑCO

)
π2π0

( suP + π1
)π2 − 1

MC
,B5 =

1
cMH

,

B6 = −

(sϑCI −
sϑCO

2
− ϑa

) π2π0
( suP + π1

)π2 − 1( 2c2
suC + c1

)

cMC 

By using the Laplace transform, the following input-output relation in the s-domain via the transfer function matrix can be 
expressed 

Δϑ(s)=G(s)Δu(s)= (sE3 − A(s))− 1B(s)Δu(s) (B.1) 

where 

A(s)=

⎛

⎝
A1 0 A6e− (τCH+τH )s

A4e− τH s A2 0
0 A5e− τC s A3

⎞

⎠,B(s)=

⎛

⎝
B1 0 B2 + B5e− 0.5τH s

B3 0 0
B4 B6e− τFCs 0

⎞

⎠,E33 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

The reader is referred to Ref. [26] for detailed forms of particular transfer functions in G(s). 

Appendix C 

A concise description of the RQM ring follows [49,50]. 

Definition C.1. A quasi-polynomial is expressed as 

q(s)=

(

1+
∑kn

j=1
qnje− τnjs

)

sn +
∑n− 1

i=0

∑ki

j=0
qije− τijssi = qn(s)sn +

∑n− 1

i=0

∑ki

j=0
qije− τijssi  

where s ∈ C is the Laplace variable, qij ∈ R are coefficients, 0 = τi0 < τi1 < … < τiki ∈ R mean delays, and qn(s) is the so-called 
associated exponential polynomial. 

Denote by rQ[s] the set of quasi-polynomials.  

Definition C.2 A fraction F(s) = qnum(s)/qden(s) where qnum(s), qden(s) ∈ RQ[s] is formally stable if qn(s) in qden(s) has no zero in the left 
half of the s-plane.  

Definition C.3 A term F(s) ∈ H∞ if ‖F(s)‖∞ = sup
Res≥0

|F(s)| < ∞.  

Definition C.4 An element F(s) = qnum(s)/qden(s) ∈ RQM, qnum(s),qden(s) ∈ RQ[s], if qnum(s) = qnum,0(s)e− τs for some qnum,0 ∈ RQ[s],τ ≥ 0, 
and F(s) ∈ H∞ is formally stable.  

Definition C.5 F1(s) ∈ RQM divides F2(s) ∈ RQM if there exists F3(s) ∈ RQM so that F2(s) = F1(s)F3(s).  
Definition C.6 F1(s) ∈ RQM and F2(s) ∈ RQM are coprime if there does not exist a noninvertible F3(s) ∈ RQM so that F1(s) = F1,0(s)F3(s), 

F2(s) = F2,0(s)F3(s) for F1,0(s),F2,0(s) ∈ RQM. 

Appendix D 

Consider the process submodel transfer function (17) representing the model for control purposes using the 1DoF control system. 
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Formulate Gm(s) via RQM according to Definition C.4 as 

Gm(s)=
b(s)
a(s)

=

b(s)
m(s)
a(s)
m(s)

=
B(s)
A(s)

,A(s),B(s) ∈ RQM (D.1)  

where m(s) = (s + m0)(s + m1)
2
,m0,m1 > 0. A possible particular solution of (19) (see Lemma 1) reads (D.2) 

Rp(s)= 1 ⇒ Pp(s) =
1 − B(s)

A(s)
=

m(s) − b(s)
a(s)

(D.2) 

Select Z(s) ∈ RQM in parameterization (20) as 

Z(s)=
m(s)
a(s)

z1s + z0

s + m0
(D.3) 

with some z1, z0 ∈ R. Then 

P(s) =
m(s) − b(s)

a(s)
−

b(s)
m(s)

m(s)
a(s)

z1s + z0

s + m0
=

m(s)
a(s)

−
b(s)
a(s)

(

1 +
z1s + z0

s + m0

)

=
m(s)(s + m0) − b(s)[(1 + z1)s + m0 + z0]

a(s)(s + m0)

=
pnum(s)
pden(s)

(D.4) 

Assume a linear-wise r(t) and a step-wise d(t), which means 

Fr(s)=
s2

fr,den(s)
,Fd(s) =

s
fd,den(s)

(D.5) 

with some second-order and first-order quasi-polynomials fr,den(s) and fd,den(s), respectively, having no zero in the right half-plane. 
Then, Lemmas 2 and 3 are satisfied simultaneously if 

[pnum(s)]s=0 = 0,
[

d
ds

pnum(s)
]

s=0
= 0 (D.6) 

Conditions (D.6) yield, respectively 

m2
0m2

1 − (b0 + b0D)(m0 + z0)= 0 ⇒ z0 =m0

(
m0m2

1

b0 + b0D
− 1
)

(D.7) 

and 

d
ds

pnum(s) = 2(s + m0)(s + m1)(2s + m0 + m1) + b(s)[τb(1 + z1)s − 1 − z1 + τb(m0 + z0)] + b0Dτ0e− (τb+τ0)s[(1 + z1)s + m0 + z0]

⇒ z1 =
2
(
m2

0m1 + m0m2
1

)
− b0 − b0D + (m0 + z0)[τb(b0 + b0D) + τ0b0D]

b0 + b0D

(D.8) 

By substituting (D.7) into (D.8), and then by substituting (D.7) and (D.8) into (D.4), we obtain 

P(s)=
pnum,4s4 + pnum,3s3 + pnum,2s2 + pnum,1(s)s + pnum,0(s)

(b0 + b0D)
2a(s)(s + m0)

(D.9) 

the numerator of which is given by (24). According to (20), R(s) then reads (D.10) 

R(s) = Rp(s) + A(s)Z(s) =
m0m1(r1s + r0)

(s + m0)(b0 + b0D)
2 ,

r1 = 2(m0 + m1)(b0 + b0D) + m0m1[b0τb + b0D(τb + τ0)], r0 = m0m1(b0 + b0D)

(D.10) 

Finally, the controller transfer function (23)–(24) reveals from CR(s) = R(s)/P(s). 

Appendix E 

Following steps of Appendix D analogously, let m(s) = (s + m0)
2
,m0 > 0 be in (D.1). A possible particular solution of (25) (see 

Lemma 4) is given by (E.1) 

Vp(s)= 1 ⇒ Pp(s) =
1 − B(s)

A(s)
=

m(s) − b(s)
a(s)

(E.1) 

Select Z(s) ∈ RQM as in (D.3), which yields P(s) being formally identical to (D.4). Assume (D.5) again. Then the disturbance rejection 
condition (29) in Lemma 6 requires (D.6) that results in 
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m4
0 − (b0 + b0D)(m0 + z0)= 0 ⇒ z0 =m0

(
m3

0

b0 + b0D
− 1
)

(E.2) 

and 

d
ds

pnum(s) = 4(s + m0)
3
+ b(s)[τb(1 + z1)s − 1 − z1 + τb(m0 + z0)] + b0Dτ0e− (τb+τ0)s[(1 + z1)s + m0 + z0]

⇒ z1 =
4m3

0 − b0 − b0D + (m0 + z0)[τb(b0 + b0D) + τ0b0D]

b0 + b0D

(E.3) 

By substituting (E.2) into (E.3), and then by substituting (E.2) and (E.3) into (D.4), it is obtained the form (D.9) of P(s), the 
numerator of which is given by (31). 

The last step (which differs from the 1DoF design) is the reference tracking as per Lemma 5. Parameterization (27) results in (E.4) 

V(s) = Vp(s) + A(s)Z(s) =
m3

0(v1s + v0)

(s + m0)(b0 + b0D)
2 ,

v1 = 4(b0 + b0D) + m0[b0τb + b0D(τb + τ0)], v0 = m0(b0 + b0D)

(E.4) 

This form, however, cannot satisfy condition (28) of Lemma 5. Hence, let us extend V(s) = R(s) + Q(s) as 

Ṽ(s)=V(s)
s + m1

s + m1
=

m3
0[v1s2 + (v1m1 + v0)s + m1v0]

(b0 + b0D)
2
(s + m0)(s + m1)

,m1 > 0 (E.5) 

and decompose (E.5) as follows 

Q(s)=
m3

0λv1s2

(b0 + b0D)
2
(s + m0)(s + m1)

,R(s)=
m3

0[(1 − λ)v1s2 + (v1m1 + v0)s + m1v0]

(b0 + b0D)
2
(s + m0)(s + m1)

, λ ∈ (0, 1] (E.6) 

Now, the reference tracking condition (28) holds due to the double zero numerator root of Q(s). 
By combining (D.9), (E.2), (E.3), and (E.6), the eventual controller transfer functions (30)–(31) are obtained. 

Appendix F  

Table F.1 
Experimental control responses evaluation for 1DoF.  

Model 
Process 

Original 
Nominal 

Original 
Perturb. uP 

Original 
Perturb. uC 

Original 
Perturb. ϑa 

Model 1 
Nominal 

Model 1 
Perturb. uP 

Model 1 
Perturb. uC 

Model 1 
Perturb. ϑa 

IAEI(y) 4344 4893 4713 4345 3194 3666 3354 3193 
IAEII(y) 4314 4836 4694 4315 3150 3603 3487 3150 
IAEIII(y) 1194 1301 1549 1195 875 941 1101 874 
IAEIV(y) 1137 1229 1538 1138 809 858 1060 803 
IAEI− IV(y) 10990 12259 12494 10991 8028 9068 9183 8021 
IAEV(y) 786.65 843.08 717.45 786.56 571.73 612.32 560.44 540.04 
TV1,I(y) 6.34 8.32 5.15 6.14 7.13 7.92 6.93 6.93 
TV1,II(y) 8.12 8.12 5.94 8.12 7.52 8.12 5.15 7.13 
TV1,III(y) 9.31 9.90 10.89 9.31 11.48 9.70 9.50 12.47 
TV1,IV(y) 8.71 6.93 7.33 8.71 18.22 12.47 14.65 16.43 
TV2,I(u) 577 473 554 577 1603 1610 1623 1591 
TV2,II(u) 553 429 292 553 2200 2348 1938 2128 
TV0,III(u) 292 317 366 293 3185 2871 2941 3278 
TV0,IV(u) 283 300 353 283 8696 8235 1025 8606 
TV0,V(u) 101 107 90 101 2024 1809 1902 1617 
ECI− IV(PH) 2.679 2.740 2.912 2.699 2.680 2.739 2.912 2.680 
ECV(PH) 0.370 0.371 0.372 0.371 0.371 0.371 0.371 0.370 
Δymax,I 2.11 2.60 1.71 2.13 1.71 2.11 1.42 1.71 
Δymax,II 2.18 2.67 1.68 2.21 1.68 2.08 1.49 1.68 
Δymax,III 0.62 0.62 0.62 0.63 0.43 0.52 0.43 0.44 
Δymax,IV 0.59 0.59 0.59 0.59 0.40 0.50 0.50 0.39 
Δymax,V 0.89 0.99 0.79 0.90 0.79 0.79 0.69 0.69 

Model 
Process 

Best-fit 
Nominal 

Best-fit 
Perturb.uP 

Best-fit 
Perturb.uC 

Best-fit 
Perturb.ϑa 

Relay 
Nominal 

Relay 
Perturb.uP 

Relay 
Perturb.uC 

Relay 
Perturb.ϑa 

IAEI(y) 3053 4077 3378 3051 5170 5731 5659 5170 
IAEII(y) 2711 3441 2718 2692 5159 5725 5694 5159 
IAEIII(y) 524 561 613 497 1709 1860 2321 1710 

(continued on next page) 
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Table F.1 (continued ) 

Model 
Process 

Original 
Nominal 

Original 
Perturb. uP 

Original 
Perturb. uC 

Original 
Perturb. ϑa 

Model 1 
Nominal 

Model 1 
Perturb. uP 

Model 1 
Perturb. uC 

Model 1 
Perturb. ϑa 

IAEIV(y) 525 599 603 495 1689 1842 2301 1690 
IAEI− IV(y) 6813 8678 7311 6735 13727 15158 15975 13728 
IAEV(y) 419.76 545.59 415.70 426.49 976.34 1024.25 909.61 975.74 
TV1,I(y) 13.66 15.05 11.68 13.07 7.72 8.12 6.93 7.72 
TV1,II(y) 10.30 15.25 7.52 9.11 7.92 7.52 6.14 7.94 
TV1,III(y) 10.30 10.49 11.48 12.67 7.13 6.93 8.02 7.14 
TV1,IV(y) 22.57 10.30 15.25 15.84 9.90 9.50 14.26 9.91 
TV2,I(u) 5883 5366 4326 5605 126 118 59 126 
TV2,II(u) 8741 12247 8801 5276 289 318 184 290 
TV0,III(u) 10893 10484 11910 11425 263 288 345 263 
TV0,IV(u) 88940 88470 118682 87716 379 342 452 381 
TV0,V(u) 31033 27736 50217 29957 90 93 123 91 
ECI− IV(PH) 2.677 2.734 2.904 2.676 2.680 2.741 2.912 2.681 
ECV(PH) 0.361 0.361 0.356 0.360 0.370 0.370 0.371 0.370 
Δymax,I 3.79 4.68 3.20 3.80 2.41 2.70 1.61 2.42 
Δymax,II 3.56 4.85 2.38 3.58 2.38 2.67 1.58 2.38 
Δymax,III 0.33 0.43 0.33 0.34 0.72 0.72 0.72 0.72 
Δymax,IV 0.59 0.69 0.59 0.60 0.69 0.70 0.69 0.69 
Δymax,V 0.69 0.79 0.69 0.79 0.99 1.01 0.90 1.00   

Table F.2 
Experimental control responses evaluation for TFC with λ = 0.3.  

Model 
Process 

Original 
Nominal 

Original 
Perturb. uP 

Original 
Perturb. uC 

Original 
Perturb. ϑa 

Model 1 
Nominal 

Model 1 
Perturb. uP 

Model 1 
Perturb. uC 

Model 1 
Perturb. ϑa 

IAEI(y) 3802 4338 4108 3803 3391 3920 3685 3391 
IAEII(y) 3731 4238 3910 3729 3292 3825 3448 3293 
IAEIII(y) 855 899 1033 855 753 783 886 753 
IAEIV(y) 786 825 947 785 678 700 802 677 
IAEI− IV(y) 9173 10300 9998 9172 8113 9228 8821 8113 
IAEV(y) 506.48 565.42 457.81 506.79 424.12 488.07 389.27 424.01 
TV1,I(y) 10.30 10.49 9.70 10.29 9.11 11.29 8.12 9.10 
TV1,II(y) 8.71 10.30 7.13 8.91 7.92 10.49 7.33 7.92 
TV1,III(y) 7.72 8.51 9.01 7.73 7.92 10.00 11.48 7.72 
TV1,IV(y) 6.73 8.32 7.72 6.53 7.33 7.72 6.14 7.34 
TV2,I(u) 518 563 402 517 545 551 428 546 
TV2,II(u) 661 697 732 662 718 768 722 718 
TV0,III(u) 345 368 428 345 524 577 644 523 
TV0,IV(u) 321 346 391 323 484 506 534 484 
TV0,V(u) 141 158 120 141 176 195 156 176 
ECI− IV(PH) 2.680 2.741 2.913 2.680 2.679 2.740 2.911 2.679 
ECV(PH) 0.371 0.371 0.372 0.371 0.370 0.370 0.371 0.370 
ΔyI 2.90 4.09 2.50 2.91 3.00 4.29 2.60 2.99 
ΔyII 2.57 3.76 1.88 2.57 2.37 3.56 1.98 2.38 
ΔyIII 0.52 0.52 0.52 0.52 0.43 0.52 0.43 0.42 
ΔyIV 0.50 0.50 0.50 0.49 0.40 0.50 0.40 0.41 
ΔyV 0.79 0.89 0.70 0.79 0.79 0.79 0.69 0.80 

Model 
Process 

Best-fit 
Nominal 

Best-fit 
Perturb.uP 

Best-fit 
Perturb.uC 

Best-fit 
Perturb.ϑa 

Relay 
Nominal 

Relay 
Perturb.uP 

Relay 
Perturb.uC 

Relay 
Perturb.ϑa 

IAEI(y) 4934 5689 5314 4934 5298 5858 5707 5298 
IAEII(y) 4854 5449 5264 4854 5301 5820 5683 5300 
IAEIII(y) 1109 1220 1433 1110 1477 1573 1807 1478 
IAEIV(y) 1029 1107 1388 1031 1439 1507 1777 1440 
IAEI− IV(y) 11925 13465 13399 11929 13515 14758 14974 13516 
IAEV(y) 830.31 879.42 745.97 838.83 847.44 911.59 760.52 846.25 
TV1,I(y) 10.99 12.28 7.33 10.99 9.11 12.08 7.72 8.91 
TV1,II(y) 10.49 10.69 9.50 10.50 11.19 11.88 7.52 10.99 
TV1,III(y) 10.69 10.68 10.50 11.09 8.61 8.32 8.71 8.61 
TV1,IV(y) 6.34 6.14 8.51 6.53 10.10 7.13 5.74 10.10 
TV2,I(u) 605 721 614 605 211 227 104 212 
TV2,II(u) 412 346 402 411 437 520 297 437 
TV0,III(u) 278 305 352 278 273 300 350 273 
TV0,IV(u) 266 289 349 265 267 292 341 268 
TV0,V(u) 110 117 90 111 117 133 96 117 
ECI− IV(PH) 2.679 2.740 2.913 2.679 2.680 2.740 2.912 2.680 
ECV(PH) 0.371 0.371 0.371 0.371 0.370 0.371 0.371 0.370 
Δymax,I 3.69 4.19 2.50 3.69 3.30 3.89 2.41 3.30 

(continued on next page) 
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Table F.2 (continued ) 

Model 
Process 

Original 
Nominal 

Original 
Perturb. uP 

Original 
Perturb. uC 

Original 
Perturb. ϑa 

Model 1 
Nominal 

Model 1 
Perturb. uP 

Model 1 
Perturb. uC 

Model 1 
Perturb. ϑa 

Δymax,II 3.66 4.26 2.48 3.66 3.27 3.86 2.38 3.27 
Δymax,III 0.62 0.72 0.72 0.62 0.72 0.72 0.72 0.72 
Δymax,IV 0.59 0.69 0.69 0.60 0.69 0.69 0.69 0.69 
Δymax,V 1.00 1.00 0.89 0.99 0.99 0.99 0.79 0.99   

Table F.3 
Experimental control responses evaluation for TFC with λ = 0.7.  

Model 
Process 

Original 
Nominal 

Original 
Perturb. uP 

Original 
Perturb. uC 

Original 
Perturb. ϑa 

Model 1 
Nominal 

Model 1 
Perturb. uP 

Model 1 
Perturb. uC 

Model 1 
Perturb. ϑa 

IAEI(y) 4333 4828 4694 4333 3272 3789 3545 3272 
IAEII(y) 4325 4800 4692 4323 3200 3724 3380 3200 
IAEIII(y) 1660 1689 1785 1662 824 836 887 814 
IAEIV(y) 1601 1637 1737 1600 742 780 814 740 
IAEI− IV(y) 11919 12954 12907 11917 8037 9129 8626 8026 
IAEV(y) 466.88 530.64 431.15 463.22 292.94 375.31 280.76 291.26 
TV1,I(y) 6.53 8.32 5.54 6.53 9.70 11.68 8.91 9.70 
TV1,II(y) 6.73 7.92 6.34 6.53 9.50 10.69 7.72 9.31 
TV1,III(y) 8.51 9.70 8.71 8.71 8.71 10.69 7.33 8.91 
TV1,IV(y) 9.31 11.68 9.70 9.31 7.33 8.32 7.72 8.12 
TV2,I(u) 587 506 519 590 1006 788 825 1006 
TV2,II(u) 422 453 305 420 1168 1112 1134 1166 
TV0,III(u) 375 410 444 378 1187 1268 1175 1180 
TV0,IV(u) 384 406 446 384 1045 1149 1133 1067 
TV0,V(u) 157 181 133 159 361 428 303 347 
ECI− IV(PH) 2.680 2.741 2.912 2.680 2.679 2.741 2.912 2.680 
ECV(PH) 0.370 0.371 0.371 0.370 0.371 0.370 0.370 0.370 
Δymax,I 1.51 2.21 1.71 1.52 2.70 4.09 2.31 2.70 
Δymax,II 1.49 2.18 1.78 1.49 2.28 3.17 2.08 2.28 
Δymax,III 0.52 0.62 0.62 0.52 0.43 0.52 0.43 0.43 
Δymax,IV 0.59 0.60 0.59 0.59 0.40 0.50 0.50 0.40 
Δymax,V 0.79 0.89 0.69 0.79 0.79 0.79 0.69 0.79 

Model 
Process 

Best-fit 
Nominal 

Best-fit 
Perturb.uP 

Best-fit 
Perturb.uC 

Best-fit 
Perturb.ϑa 

Relay 
Nominal 

Relay 
Perturb.uP 

Relay 
Perturb.uC 

Relay 
Perturb.ϑa 

IAEI(y) 5153 5934 5538 5152 5753 6259 6240 5753 
IAEII(y) 5076 5685 5483 5073 5744 6260 6231 5744 
IAEIII(y) 1156 1269 1489 1155 2482 2546 2719 2482 
IAEIV(y) 1065 1161 1443 1065 2377 2434 2627 2376 
IAEI− IV(y) 12450 14409 13953 12446 16355 17498 17816 16354 
IAEV(y) 832.89 897.44 747.65 833.18 728.15 774.48 651.42 728.24 
TV1,I(y) 12.67 14.45 8.42 12.97 6.34 9.70 6.53 6.34 
TV1,II(y) 11.48 11.09 9.31 11.68 8.32 8.71 7.33 8.32 
TV1,III(y) 11.39 9.50 12.67 11.39 8.51 9.50 9.70 8.52 
TV1,IV(y) 6.53 5.94 8.32 6.73 7.92 8.71 7.33 7.92 
TV2,I(u) 618 726 621 617 144 185 58 144 
TV2,II(u) 408 358 413 411 294 403 211 294 
TV0,III(u) 277 306 355 278 277 306 359 276 
TV0,IV(u) 267 289 351 267 272 298 354 272 
TV0,V(u) 110 120 90 110 139 152 106 139 
ECI− IV(PH) 2.679 2.740 2.913 2.679 2.680 2.741 2.913 2.680 
ECV(PH) 0.370 0.371 0.371 0.371 0.370 0.369 0.371 0.370 
Δymax,I 3.79 4.29 2.70 3.79 2.11 2.80 1.91 2.11 
Δymax,II 3.86 4.36 2.57 3.86 2.08 2.77 1.88 2.08 
Δymax,III 0.62 0.72 0.72 0.62 0.72 0.82 0.82 0.72 
Δymax,IV 0.69 0.69 0.69 0.69 0.69 0.79 0.79 0.69 
Δymax,V 0.99 0.89 0.89 0.99 0.99 0.99 0.79 0.99  

Appendix G 

The Smith-predictor reference-to-output transfer function (i.e., its complementary sensitivity function) reads 

TSm(s)=
CSm(s)G(s)

1 + CSm(s)G(s) − CSm(s)Gm(s) + CSm(s)Gm0(s)
(G.1) 

By matching (G.1) with (37), one gets (51) directly. Analogously, a comparison of (G.1) with (43) yields (52). 
A sketch of a proof of Theorem 1. It can be deduced from the Laplace transform properties that the output excitation caused by the 
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linear-wise load disturbance asymptotically vanishes if the corresponding transfer function satisfies 

[
Gdy(s)

]

s=0 = 0 and
[

d
ds

Gdy(s)
]

s=0
= 0 (G.2) 

One can check that for 1DoF, the disturbance-to-output transfer function with controller (23)–(24) has form (G.3) 

Gdy,1DoF(s)=
G(s)

1 + CR(s)G(s)
(G.3) 

satisfy (G.2), see also (D.6)-(D.8). On the contrary, the TFC structure with (G.4) 

Gdy,TFC(s)=
G(s)

1 + [CR(s) + CQ(s)]G(s)
(G.4) 

does not satisfy (G.2), which means that it is not possible to reject linear-wise load disturbances with controllers (30)–(31). 
Hence, the Smith predictor scheme yields 

Gdy,Sm(s)

=
G(s)

1 + CSm(s)G(s) − CSm(s)Gm(s) + CSm(s)Gm0(s)

(G.5) 

By substituting (51) and (52) with particular controllers (23)–(24) and (30)–(31), respectively, into (G.5), it can be found after 
some algebraic manipulation that (G.6) holds: 

[
Gdy,Sm(s)

]

s=0 = 0 and
[

d
ds

Gdy,Sm(s)
]

s=0
= − τ b0 + b0D

a0 + a0D
= − τk ∕= 0 (G.6)  

where k means the model static gain. Therefore, the designed Smith predictor cannot reject the linear-wise disturbance unless the 
input-output delay is zero. 

Nomenclature 

Symbols 
C set of complex-valued numbers, vectors or functions 
c specific heat capacity of water (J kg− 1 K− 1) 
d(t) load disturbance 
e(t) control error 
G(s) controlled plant transfer function 
Gdy(s) disturbance-to-output transfer function 
CR(s) outer-feedback controller 
CQ(s) inner-feedback controller 
CSm(s) Smith-predictor controller 
G(s) transfer function matrix 
H2 Hardy space of holomorphic functions with bounded integral of gain squares in the right-half complex plane 
H∞Hardy space of holomorphic functions with bounded gain in the right-half complex planej Hardy space of holomorphic functions 

with bounded gain in the right-half complex planejimaginary unit (j2 = − 1) 
Im imaginary part of a complex number or function 
J Jacobian matrix 
k heat transmission coefficient (J s− 1 K− 1), process static gain 
ṁ(t) water mass flow rate (kg s− 1) 
M water masses (kg) 
p static model parameters vector 
PH(t) input heater power (W) 
r(t) reference signal 
rQ[s] set of quasi-polynomials 
Re real part of a complex number or function 
RQM ring of quasi-polynomial meromorphic functions 
R set of real-valued numbers, vectors, or functions 
s Laplace transform variable 
S0(s) nominal sensitivity function 
S(s)perturbed sensitivity functiont perturbed sensitivity functionttime (s) 
T0(s) nominal complementary sensitivity function 
u(t) computed control action, manipulated input 
uC(t) voltage input to the heat exchanger fan (V) 
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uP(t) voltage input to the pump (V) 
WM(s) uncertainty frequency distribution weight function 
WP(s) frequency distribution sensitivity weight function 
y(t) system output 
Δymax maximum overshoot/undershoot 
‖ ⋅ ‖2 H2 norm of a vector or a matrix  

Greek letters 
λ weight controller parameter 
Δ stead-state deviation, variable change 
Δt sampling period 
Δ(s) bounded stable variable function 
ϑa(t) ambient temperature (◦C) 
ϑCI(t) cooler inlet fluid temperature (◦C) 
ϑCO(t) cooler fluid outlet temperature (◦C) 
ϑHO(t) heater outlet fluid temperature (◦C) 
m0,m1 controller parameters 
Ω operating point 
τ particular delay value (s)  

Subscripts 
a ambient 
C cooler (heat sink, radiator) 
d delay 
den denominator 
F fan 
H heater 
m model 
num numerator 
O output 
p particular solution 
P piping 
Sm Smith predictor 
0 nominal system 
Superscripts 
s steady state 
T vector or matrix transpose  

Abbreviations 
i.a. inter alia 
DDE delay differential equation 
DPDE delay partial differential equation 
EC energy consumption 
HW hardware 
HX heat exchanger 
IAE integral absolute error 
ODE ordinary differential equation 
PC personal computer 
PDE partial differential equation 
PI proportional-integral 
PID proportional-integral-derivative 
SW software 
TFC two-feedback-controllers 
TTL transistor-transistor logic 
TV total variation 
1DoF one-degree-of-freedom 
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[32] A. Vasičkaninová, M. Bakošová, A. Mészáros, Fuzzy control design for energy efficient heat exchanger network, Chem. Eng. Trans. 88 (2021) 529–534, https:// 

doi.org/10.3303/CET2188088. 
[33] T. Klopot, P. Skupin, P. Grelewicz, J. Czeczot, Practical PLC-based implementation of adaptive dynamic matrix controller for energy-efficient control of heat 

sources, IEEE Trans. Ind. Electron. 68 (2021) 4269–4278, https://doi.org/10.1109/TIE.2020.2987272. 
[34] S.S. Butt, R. Prabel, R. Grimmecke, H. Aschemann, Nonlinear model-predictive control for an engine cooling system with smart valve and pump, 2014 19th Int. 

Conf. Meth. Mod. Autom. Robotics (MMAR), Miedzyzdroje, Poland (2014) 520–525, https://doi.org/10.1109/MMAR.2014.6957408. 
[35] M.H. Salah, T.H. Mitchell, J.R. Wagner, D.M. Dawson, A smart multiple-loop automotive cooling system—model, control, and experimental study, IEEE ASME 

Trans. Mechatron. 15 (2010) 117–124, https://doi.org/10.1109/TMECH.2009.2019723. 
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Thermal Systems with Heat Exchangers, Elsevier (Academic Press), Cambridge, MA, 2020, pp. 263–284, https://doi.org/10.1016/B978-0-12-819422-5.00012- 
8. 

[51] O.J. Smith, Closer control of loops with dead time, Chem. Eng. Prog. 53 (1957) 217–219. 
[52] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11 (1963) 431–441, https://doi.org/10.1137/0111030. 
[53] J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308–313. 
[54] M. Green, D.J. N Limebeer, Linear Robust Control, Dover Publications, New York, 2012. 
[55] M. Huba, Performance measures, performance limits and optimal PI control for the IPDT plant, J. Process Control 23 (2013) 500–515, https://doi.org/10.1016/ 

j.jprocont.2013.01.002. 
[56] M. Huba, S. Chamraz, P. Bistak, D. Vrancic, Making the PI and PID controller tuning inspired by Ziegler and Nichols precise and reliable, Sensors 21 (2021) 

6157, https://doi.org/10.3390/s21186157. 
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