
Citation: Gonda, D.; Ďuriš, V.;

Tirpáková, A.; Pavlovičová, G.

Teaching Algorithms to Develop the

Algorithmic Thinking of Informatics

Students. Mathematics 2022, 10, 3857.

https://doi.org/10.3390/

math10203857

Academic Editor: Michael

Voskoglou

Received: 7 October 2022

Accepted: 17 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Teaching Algorithms to Develop the Algorithmic Thinking of
Informatics Students
Dalibor Gonda 1 , Viliam Ďuriš 2,* , Anna Tirpáková 2,3 and Gabriela Pavlovičová 2

1 Department of Mathematical Methods and Operations Research, Faculty of Management Science
and Informatics, University of Žilina, Univerzitná 1, 01001 Žilina, Slovakia

2 Department of Mathematics, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra,
Tr. A. Hlinku 1, 94901 Nitra, Slovakia

3 Department of School Education, Faculty of Humanities, Tomas Bata University in Zlín, Štefánikova 5670,
760 00 Zlín, Czech Republic

* Correspondence: vduris@ukf.sk; Tel.: +421-37-6408-708

Abstract: Modernization and the ever-increasing trend of introducing modern technologies into
various areas of everyday life require school graduates with programming skills. The ability to
program is closely related to computational thinking, which is based on algorithmic thinking. It is well
known that algorithmic thinking is the ability of students to work with algorithms understood as a
systematic description of problem-solving strategies. Algorithms can be considered as a fundamental
phenomenon that forms a point of contact between mathematics and informatics. As part of an
algorithmic graph theory seminar, we conducted an experiment where we solved the knight’s
tour problem using the backtracking method to observe the change in students’ motivation to learn
algorithms at a higher cognitive level. Seventy-four students participated in the experiment. Statistical
analysis of the results of the experiment confirmed that the use of the algorithm with decision-making
in teaching motivated students to learn algorithms with understanding.

Keywords: backtracking; computational thinking; heuristics; knight’s tour problem; learning algo-
rithms; problem solving

MSC: 68W01; 97C70

1. Introduction

Programming, i.e., software development, is becoming increasingly important as it
enables the integration of various technologies into an ever-widening range of human
activities. According to Türker and Pala [1], computational thinking can be considered an
ability that every individual should gradually have. For this reason, too, a considerable
initiative is being developed to integrate programming into the teaching process from
primary school onwards [2–4]. Along with the growing availability of personal computers,
researchers have addressed the issue of linking the mathematics teaching and programming.
Related to this, there was an effort to identify the way of thinking that students need to
develop in mathematics teaching to increase their potential to program (compare: [5–7]).
As early as the 1950s, the term “computational thinking” began to be used, which describes
the use of structured thinking or algorithmic thinking to create a suitable output for a given
input [8]. According to Wing [9], computational thinking is a type of analytical thinking that
includes problem solving, system design and an understanding of human behavior based
on informatics concepts. Computational thinking represents conceptualization rather than
programming, basic skills rather than syntax skills, and human thinking based on creativity,
not programmed computer thinking. Computational thinking is a way of thinking that
is used to create systematic and repeatable problem-solving procedures and includes
problem decomposition, pattern recognition, abstraction, and algorithmic thinking [9,10].

Mathematics 2022, 10, 3857. https://doi.org/10.3390/math10203857 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203857
https://doi.org/10.3390/math10203857
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5783-4143
https://orcid.org/0000-0003-2653-6906
https://orcid.org/0000-0002-4432-3528
https://orcid.org/0000-0001-8846-6910
https://doi.org/10.3390/math10203857
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203857?type=check_update&version=1

Mathematics 2022, 10, 3857 2 of 13

Indeed, research has shown that integrating the teaching of computational thinking into the
teaching of mathematics subjects improves students’ programming skills [11–14]. Given
that algorithms form an intersection between mathematics and informatics [5], the teaching
of algorithms can be used to develop algorithmic thinking, which can be considered a basic
pillar of computational thinking. Algorithmic thinking is an important detail-oriented skill
that is based on a person’s cognitive ability to analyze problems, develop a sequence of steps
leading to an appropriate solution, streamline an already known sequence of steps, and find
alternative steps to solve a problem [15]. Algorithmic thinking is the ability of students to
work with algorithms perceived as a systematic description of problem-solving strategies.
The ability to think in algorithms and algorithmic procedures can be defined as one of the
important educational goals in mathematics [16]. The importance of teaching algorithms is
that students learn the logic of programming without any programming language. Using
an algorithm, it is possible for a student to write the steps of processing a program in their
own language, that is, they can create a flowchart of a program with so-called code [17].
Thus, algorithms form the basis of programming logic. As a result of this information, it
can be stated that when teaching algorithms, the student acquires the logic of programming
and begins to focus more on the problem-solving process. Knuth [5] pointed out that
the attention paid to algorithms is common in algorithmic thinking, but not common in
mathematics. Similarly, Kiss and Arki [18] found that the lack of algorithmic thinking
disadvantages students in higher education. Their research has shown that traditional
teaching strategies are unsuitable for developing algorithmic thinking. They emphasized
the need for a strategic focus on algorithmic and computational thinking in teaching. To
use the teaching of mathematics to develop students’ algorithmic thinking, it is necessary
to find suitable strategies to change the teaching and learning of algorithms. The aim of
our research is to statistically verify whether solving the knight’s tour problem using the
backtracking method will cause a change in students’ approach to learning algorithms.

2. Algorithms and Their Learning

An algorithm is a well-defined sequence of rules that provides guidance on how to
create output information from input information using a finite number of steps [19]. Other
authors refer to the algorithm as only some computational procedures, those that guarantee
the solution of the problem, if the steps of the procedure are performed in the specified order
and without errors [20,21]. The execution of the algorithm therefore has high reliability and
speed, which is its strength, if the only goal is to solve the task. However, if it is the subject
of teaching and learning, an algorithm executed without regard to its significance may
lead to memorization. Algorithms are a basic and key part of mathematics. The problem
is not the algorithms themselves, but the dominance of algorithmic solution templates in
the teaching of mathematics [22]. This undesirable trend in teaching algorithms is because
many teachers consider passing on finished algorithms to students as the main goal of
teaching mathematics (e.g., [23–27]). With this goal, a mentality of mathematics teaching is
formed, where students are “programmed” to solve a set of problems [28]. Students focus
on memorizing algorithms because they give them a sense of security and believe that mem-
orizing an algorithm and assigning it to a given task leads to success in mathematics [21].
However, those skilled in the art of mathematics agree that memorized algorithms are easy
to forget, error-prone, and transmission-resistant (e.g., [29–31]). Already Brousseau’s theory
of didactic situations in mathematics [32] suggests that passing on finished algorithms to
students robs them of their own intellectual work in learning mathematics, and that is
why learning by imitating algorithms is ineffective. Fan and Bokhove [33] concluded in
their literature review that this way of teaching mathematics leads students to a dichotomy
between computational procedures and understanding. Two separate studies (Jonsson et al.
and Wirebring et al. [34,35] have shown that learning mathematics through creative mathe-
matical reasoning and constructing one’s own solution methods can be more effective than
if a teacher presents students with ready-made algorithms that they then try to emulate
when solving tasks. Based on the above research, it is necessary to look for ways to teach

Mathematics 2022, 10, 3857 3 of 13

algorithms that would lead to a change in the way students learn algorithms. It is necessary
to teach algorithms, especially for students of informatics study programs, in such a way
that they develop algorithmic thinking, the ability to solve problems and creativity, which
is a sub-dimension of computational thinking [36]. As with learning generally, learning the
algorithms of students in school mathematics can take place at different cognitive levels.
According to Fan and Bokhove [33], learning and learning algorithms can be implemented
at three mutually supportive cognitive levels. At the first cognitive level, it is possible to
memorize the algorithm and then execute it in a comparable situation, but without real un-
derstanding. At the second cognitive level, there is an understanding of why the algorithm
works. Based on this understanding, the student can apply the algorithm in a relatively
complex situation. At the third cognitive level, the student can compare the algorithm with
other algorithms (for example in terms of efficiency), evaluate the algorithm and create
their own algorithm, while generalization is also considered to create a new algorithm.
We explicitly distinguish between levels two and three in terms of understanding one
particular algorithm and comparing several algorithms, because assessment is commonly
perceived at a higher level of cognition as understanding (e.g., [37]). Cognitive levels two
and three can be considered as levels where algorithms are studied. It is through the study
of algorithms as general procedures that students gain the knowledge that mathematics is
well structured [38], and its study brings a lot of benefits to the programmer.

3. The Role of the Knight’s Tour Problem and Its Didactic Potential

The knight’s tour problem is a chess and math problem. The knight moves according
to the chess rules on the chessboard and the task is to visit each square exactly once. On
a typical 8 × 8 chessboard, this task has a large number of solutions, of which in exactly
26,534,728,821,064 cases the knight ends up in the field from which the knight endangers
the starting field [39]. The simplest algorithm for solving the Knight’s tour problem is
backtracking. Backtracking is a way of solving algorithmic problems based on searching the
depth of possible solutions. This algorithm is an improvement over brute force solutions,
as a large number of potential solutions can be ruled out without direct testing (more
detailed, e.g., [40,41]). Backtracking is one of the return search algorithms that solves a
specific problem not according to fixed calculation rules but based on trial and error. It
is the presence of the trial-and-error method that can be used to change the perception
of algorithms and thus the way students acquire them. Another “didactic” benefit of
this algorithm is the fact that the process of trial and error is broken down into several
subtasks, which are expressed in recursive terms and consist in examining the final number
of subtasks.

An algorithm to solve the knight’s tour problem can be created by defining the task
that the algorithm has to solve. If we have a chessboard n× n, then the chessboard has n2

squares and the knight must execute n2 − 1 moves so that the knight enters each square
exactly once. The task of the algorithm is to decide whether the next move can be performed.
Its basic structure is an algorithm (Algorithm 1):

Algorithm 1: Algorithm to determine the possibility of making the next move

procedure try move;
begin initializing stroke selection;

repeat select another candidate from a list of other moves;
if acceptable then
begin record move;

if the chessboard is not full then
begin try next move;

if unsuccessful then delete previous record
end

end
until (move was successful) ∨ (there are no other candidates)

end.

Mathematics 2022, 10, 3857 4 of 13

In the next phase of algorithm creation, it is necessary to mathematize individual com-
mands and conditions, so it would be possible to program the algorithm and then debug it.
For example, we replace the condition “chessboard is not full” with the expression i < n2;
we write the position of the knight using local variables u, v; the predicate “acceptable”
using a logical combination of 1 ≤ u ≤ n and 1 ≤ v ≤ n, etc. The resulting algorithm for
solving the knight’s tour problem on the chessboard can be found e.g., in [42].

An essential characteristic of the above solution to the knight’s tour problem on the
chessboard is the fact that the individual steps, based on which we proceeded to solve
the problem, were first examined, and recorded by error using the trial method. In the
case of a “dead end” that does not lead to a result, it is possible to delete the wrong part
of the solution and return to the position where we went in the wrong direction when
looking for a solution. It is the use of the trial-and-error method that makes unexpected
elements of the algorithm for students that can encourage them to change the way they
learn algorithms. We consider the finding that even the right algorithm can lead to a “dead
end” as an element that will strongly disrupt students’ perception of algorithms as a safe
and trouble-free way to solve the problem.

4. Method

In agreement with the students of informatics at the bachelor’s degree level, we
conducted an experiment within the seminar algorithmic graph theory. We devoted four
lessons to the knight’s tour problem, which were beyond the scope of the seminar’s teaching
hours. Experimental teaching took place in the fourth and fifth week of the semester without
changing the teacher. We solved the problem based on a scheme established in 1910 by J.
Dewey (Figure 1).

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 13

 begin try next move;

 if unsuccessful then delete previous record

 end

 end

 until (move was successful) ∨ (there are no other candidates)

end.

In the next phase of algorithm creation, it is necessary to mathematize individual

commands and conditions, so it would be possible to program the algorithm and then

debug it. For example, we replace the condition “chessboard is not full” with the expres-

sion 𝑖 < 𝑛2; we write the position of the knight using local variables u, v; the predicate

“acceptable” using a logical combination of 1 ≤ 𝑢 ≤ 𝑛 and 1 ≤ 𝑣 ≤ 𝑛, etc. The resulting

algorithm for solving the knight’s tour problem on the chessboard can be found e.g., in

[42].

An essential characteristic of the above solution to the knight’s tour problem on the

chessboard is the fact that the individual steps, based on which we proceeded to solve the

problem, were first examined, and recorded by error using the trial method. In the case of

a “dead end” that does not lead to a result, it is possible to delete the wrong part of the

solution and return to the position where we went in the wrong direction when looking

for a solution. It is the use of the trial-and-error method that makes unexpected elements

of the algorithm for students that can encourage them to change the way they learn algo-

rithms. We consider the finding that even the right algorithm can lead to a “dead end” as

an element that will strongly disrupt students’ perception of algorithms as a safe and trou-

ble-free way to solve the problem.

4. Method

In agreement with the students of informatics at the bachelor’s degree level, we con-

ducted an experiment within the seminar algorithmic graph theory. We devoted four les-

sons to the knight’s tour problem, which were beyond the scope of the seminar’s teaching

hours. Experimental teaching took place in the fourth and fifth week of the semester with-

out changing the teacher. We solved the problem based on a scheme established in 1910

by J. Dewey (Figure 1).

Figure 1. Basic stages of problem solving [43].

The use of this scheme allows students to be involved in creating a solution to the

problem—creating an algorithm. During the individual phases, they were emphasized

what solving skills are needed to master the individual stages of problem solving. At the

last (fourth lesson) the students had the task to program the created algorithm.

When enrolling in the second year of bachelor’s studies, we asked students if they

would be willing to participate in the experiment. The course and goal of the experiment

were presented to the students and they were assured of the anonymity of the obtained

results. Out of 198 approached students, 74 students at the age of 20 voluntarily partici-

pated in the experiment. The aim of the experiment was to verify whether the use of the

search strategy with return—backtracking to solve the problem of the so-called “fun

math” the knight’s tour problem motivates students to change the way they learn algo-

rithms. Based on the stated goal of the research, we expressed the following working hy-

pothesis:

Assignment
analysis

Problem
deffinition

Generating
alternatives

Making
decisions

Assessment

Figure 1. Basic stages of problem solving [43].

The use of this scheme allows students to be involved in creating a solution to the
problem—creating an algorithm. During the individual phases, they were emphasized
what solving skills are needed to master the individual stages of problem solving. At the
last (fourth lesson) the students had the task to program the created algorithm.

When enrolling in the second year of bachelor’s studies, we asked students if they
would be willing to participate in the experiment. The course and goal of the experiment
were presented to the students and they were assured of the anonymity of the obtained
results. Out of 198 approached students, 74 students at the age of 20 voluntarily participated
in the experiment. The aim of the experiment was to verify whether the use of the search
strategy with return—backtracking to solve the problem of the so-called “fun math” the
knight’s tour problem motivates students to change the way they learn algorithms. Based
on the stated goal of the research, we expressed the following working hypothesis:

H1. The implementation of backtracking into the teaching of algorithms motivates students to learn
algorithms at a higher cognitive level.

At the beginning of the first lesson of experimental teaching of the algorithmic graph
theory seminar, we asked students to fill in an anonymous questionnaire, which was created
by members of the research team. The questionnaire contained eleven items (questions).
The students filled in the questionnaire before the start of the experiment (pre-test). The
same questionnaire was filled in by the participants of the experiment after the end of
the last fourth lesson of the experiment (post-test). A total of 74 respondents participated
in the experiment. Students answered the answers to the individual questions of the
questionnaire from a scale of 1–5, where 1 means “least important” and 5 “most important”.
The aim of the questionnaire was for students to evaluate the importance of individual

Mathematics 2022, 10, 3857 5 of 13

activities in learning algorithms on the scale. The questions in the questionnaire are divided
according to three cognitive levels of learning algorithms according to [33]. Three evaluated
activities were dedicated to each cognitive level. Two questions of the questionnaire were
aimed at finding out whether students prefer learning based on sample examples or the
theoretical basis of the algorithm when learning algorithms.

We were interested in whether there were differences in the answers to individual items
in the pre-test and in the post-test and if so, whether these differences are also statistically
significant. We used the Stuart–Maxwell test to determine the statistical significance of
differences in students’ responses to individual items in the pre-test and post-test.

4.1. Description of the Method

The Stuart–Maxwell test [44–47], a score-type test, is an extension of McNemar’s
test [48] to the situation where responses are allowed more than two response categories.

For the general matched-pair data summarized in an r × r square contingency table
(Table 1) with total sample size n, we denote the probability of falling in to the ith row and

jth column as pij, and we define the marginal probabilities pi· =
r
∑

j=1
pij, i = 1, 2, . . . , r, and

p·j =
r
∑

i=1
pij, j = 1, 2, . . . , r; clearly

r
∑

i=1

r
∑

j=1
pij = 1. We usually write by using the probability

table (Table 2), which is generally in the form below.

Table 1. Contingency table.

n11
n21

...
nr1

n12
n22

...
nr2

. . .
. . .

...
. . .

n1r
n2r

...
nrr

n1·
n2·
...

nr·
n·1 n·2 ... n·r n

Table 2. Probability table.

p11
p21
...

pr1

p12
p22

...
pr2

. . .
. . .

...
. . .

p1r
p2r
...

prr

p1·
p2·
...

pr·
p·1 p·2 ... p·r 1

Also, we denote the corresponding number of observations in the associated cases as
nij, ni·, and n·j, respectively.

We have

n =
r

∑
i=1

r

∑
j=1

nij, ni·=
r

∑
j=1

nij, i = 1, 2, . . . , r,n·j=
r

∑
i=1

nij, j = 1, 2, . . . , r.

To test the marginal homogeneity of the two sets of probabilities, we are interested in
assessing the hypothesis H0: p1· = p·1, p2· = p·2, . . . , pr· = p·r.

Let di = nj. − n.i for i = 1, 2, . . . , r and d = (d1, . . . , dr)
′. Denote Vii = nj. + n.i − 2nii,

Vij = −
(
nij + nji

)
for i 6= j and V∗ = (Vij)

r−1
i,j=1, d∗ = (d1, . . . , dr−1)

′. Then, if the hypothesis

H0 is true, the Stuart-Maxwell test statistics Q = d∗′V∗
−1

d∗ is asymptotically chi-squared
with degree of freedom r − 1 for n→ ∞ . Consequently, if Q ≥ χ2

α(r− 1), we reject the
hypothesis H0 at the significance level, which is asymptotically equal α.

Mathematics 2022, 10, 3857 6 of 13

4.2. Data Analysis and Results

Using the Stuart–Maxwell test, we tested the null hypothesis H0, which expresses
that the probability of occurrence of the considered activity is the same before and after
the experiment. We will test at a significance level of α = 0.05. We performed the Stuart-
Maxwell test using the STATISTICA program. After entering the input data in the output
set of the computer, we received a contingency table for each item and the value of the
test criterion of the Stuart-Maxwell test (Table 3). We will compare the value of the test
criterion Q with the critical value χ2

0.05(4) = 9488 We rejected the tested hypothesis H0 at
the significance level α = 0.05, if the value of the test criterion Q is greater than or equal to
the critical table value (9488).

Table 3. Results of the Stuart-Maxwell test (pre-test and post-test).

Cognitive Level Question Q

1
1. question 44.363 *
5. question 2.787
9. question 44.224 *

2
2. question 20.941 *
6. question 4.156
10. question 35.844 *

3
3. question 24.178 *
7. question 2.313
11. question 37.926 *

Note. Values exceeding the critical value are indicated * in the table.

Based on the results shown in Table 3, we can see that within cognitive level 1 there
were statistically significant changes in the answers to questions no. 1 and no. 9. A
statistically significant difference in the answers to no. 1 (when learning algorithms, I
consider it important to remember the algorithm as a whole). in the pre-test as in the
post-test illustrated in Figure 2.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 13

To test the marginal homogeneity of the two sets of probabilities, we are interested

in assessing the hypothesis 𝐻0: 𝑝1⋅ = 𝑝⋅1, 𝑝2⋅ = 𝑝⋅2, ...,𝑝𝑟⋅ = 𝑝⋅𝑟.

Let 𝑑𝑖 = 𝑛𝑗. − 𝑛.𝑖 for 𝑖 = 1,2, . . . , 𝑟 and d = (𝑑1, . . . , 𝑑𝑟)′. Denote 𝑉𝑖𝑖 = 𝑛𝑗. + 𝑛.𝑖 − 2𝑛𝑖𝑖 ,

𝑉𝑖𝑗 = −(𝑛𝑖𝑗 + 𝑛𝑗𝑖) for 𝑖 ≠ 𝑗 and 𝑉∗ = (𝑉𝑖𝑗)𝑖,𝑗=1
𝑟−1 , 𝑑∗ = (𝑑1, . . . , 𝑑𝑟−1)′. Then, if the hypothe-

sis 𝐻0 is true, the Stuart-Maxwell test statistics 𝑄 = 𝑑∗′
𝑉∗−1

𝑑∗ is asymptotically chi-

squared with degree of freedom 𝑟 − 1 for 𝑛 → ∞. Consequently, if 𝑄 ≥ 𝜒𝛼
2(𝑟 − 1), we re-

ject the hypothesis 𝐻0 at the significance level, which is asymptotically equal 𝛼.

4.2. Data Analysis and Results

Using the Stuart–Maxwell test, we tested the null hypothesis 𝐻0, which expresses

that the probability of occurrence of the considered activity is the same before and after

the experiment. We will test at a significance level of α = 0.05. We performed the Stuart-

Maxwell test using the STATISTICA program. After entering the input data in the output

set of the computer, we received a contingency table for each item and the value of the

test criterion of the Stuart-Maxwell test (Table 3). We will compare the value of the test

criterion 𝑄 with the critical value 𝜒0,05
2 (4) = 9488 We rejected the tested hypothesis 𝐻0

at the significance level α = 0.05, if the value of the test criterion 𝑄 is greater than or equal

to the critical table value (9488).

Table 3. Results of the Stuart-Maxwell test (pre-test and post-test).

Cognitive Level Question 𝑸

1

1. question 44.363 *

5. question 2.787

9. question 44.224 *

2

2. question 20.941 *

6. question 4.156

10. question 35.844 *

3

3. question 24.178 *

7. question 2.313

11. question 37.926 *

Note. Values exceeding the critical value are indicated in the table.

Based on the results shown in Table 3, we can see that within cognitive level 1 there

were statistically significant changes in the answers to questions no. 1 and no. 9. A statis-

tically significant difference in the answers to no. 1 (when learning algorithms, I consider

it important to remember the algorithm as a whole). in the pre-test as in the post-test il-

lustrated in Figure 2.

Figure 2. Respondents’ answers to question no. 1 (when learning algorithms, I consider it important
to remember the algorithm as a whole) in pre-test and post-test (in%).

In Figure 2 we can see that in the pre-test up to 80% of students considered remem-
bering the algorithm as a whole to be very important, but in the post-test, this activity in
learning algorithms was considered very important by only 28% of students. A similar
decrease in the importance of the answer in the post-test compared to the answers in
the pre-test was also recorded in the case of question no. 9 (when learning algorithms, I
consider it important to solve more similar tasks to use a memorized algorithm). There
was no change in importance in the ability to know how to assign an algorithm to a given

Mathematics 2022, 10, 3857 7 of 13

task (question no. 5). Students consider this ability to be very important in both pre-test
and post-test.

Within cognitive level 2, there were statistically significant changes in the answers to
questions no. 2 and no. 10. There was a statistically significant difference in the answers
to question no. 10 (when learning algorithms, I consider it important to be able to use
the whole algorithm in more complex tasks), in the pre-test as opposed to the post-test,
illustrated in Figure 3.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 13

Figure 2. Respondents’ answers to question no. 1 (when learning algorithms, I consider it important

to remember the algorithm as a whole) in pre-test and post-test (in%).

In Figure 2 we can see that in the pre-test up to 80% of students considered remem-

bering the algorithm as a whole to be very important, but in the post-test, this activity in

learning algorithms was considered very important by only 28% of students. A similar

decrease in the importance of the answer in the post-test compared to the answers in the

pre-test was also recorded in the case of question no. 9 (when learning algorithms, I con-

sider it important to solve more similar tasks to use a memorized algorithm). There was

no change in importance in the ability to know how to assign an algorithm to a given task

(question no. 5). Students consider this ability to be very important in both pre-test and

post-test.

Within cognitive level 2, there were statistically significant changes in the answers to

questions no. 2 and no. 10. There was a statistically significant difference in the answers

to question no. 10 (when learning algorithms, I consider it important to be able to use the

whole algorithm in more complex tasks), in the pre-test as opposed to the post-test, illus-

trated in Figure 3.

Figure 3. Respondents’ answers to question no. 10 (when learning algorithms, I consider it im-

portant to be able to use the whole algorithm in more complex tasks) in pre-test and post-test (in%).

In Figure 3 we can see that in the pre-test, up to 81% of students consider the ability

to know how to use the algorithm in more complex tasks to be insignificant. In the post-

test, however, students were statistically significantly more inclined to believe that it is

important to master the algorithm so that they can use it in solving more complex tasks.

The same change was noted in the perception of the importance of the need to understand

the individual steps of the algorithm (question 2). In the case of question no. 6 (when

learning algorithms, I consider it important to analyze the algorithm to find out why it

works), students consider this activity to be of little importance in the pre-test as well as

in the post-test.

Within cognitive level 3, there were statistically significant changes in the answers to

questions no. 3 and 11. There was a statistically significant difference in the answers to

questions no. 3 (when learning algorithms, I consider it important to be able to adapt the

algorithm to the problem) in the pre-test as opposed to the post-test, illustrated in Figure

4.

Figure 3. Respondents’ answers to question no. 10 (when learning algorithms, I consider it important
to be able to use the whole algorithm in more complex tasks) in pre-test and post-test (in%).

In Figure 3 we can see that in the pre-test, up to 81% of students consider the ability
to know how to use the algorithm in more complex tasks to be insignificant. In the post-
test, however, students were statistically significantly more inclined to believe that it is
important to master the algorithm so that they can use it in solving more complex tasks.
The same change was noted in the perception of the importance of the need to understand
the individual steps of the algorithm (question 2). In the case of question no. 6 (when
learning algorithms, I consider it important to analyze the algorithm to find out why it
works), students consider this activity to be of little importance in the pre-test as well as in
the post-test.

Within cognitive level 3, there were statistically significant changes in the answers to
questions no. 3 and 11. There was a statistically significant difference in the answers to
questions no. 3 (when learning algorithms, I consider it important to be able to adapt the
algorithm to the problem) in the pre-test as opposed to the post-test, illustrated in Figure 4.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 13

Figure 4. Respondents’ answers to question no. 3 (when learning algorithms, I consider it important

to be able to adapt the algorithm to the problem) in pre-test and post-test (in%).

In Figure 4 we can see that the ability to adapt the adopted algorithm to the solved

problem was considered important only by 21% of students in the pre-test and up to 58%

of them considered it to be of little importance. In the post-test, 45% considered this ability

important and only 30% considered it unimportant. Even in the case of question no. 11

(When learning algorithms, I consider it important to be able to build my own algorithm.)

there has been a similar change in the evaluation by students. In the pre-test, they rated

this ability mostly as very unimportant, but in the post-test, they mostly rated it as im-

portant.

Through question no. 4 (when learning algorithms, I consider it important to have a

model example, based on which I will learn the algorithm) and questions no. 8 (when

learning algorithms, I consider it important to have a theoretical description of the algo-

rithm), we looked at what resources students consider important when learning algo-

rithms. Pre-test and post-test results for question no. 4 are listed in Table 4 and for ques-

tions no. 8 in Table 5 (Tables 4 and 5 are contingency tables expressed in %).

Table 4. Contingency table of answers to question no. 4 (in%).

Item 4 Post-Test (in%)
Sum

Pre-Test (in%) 1 2 3 4 5

1 4 0 0 0 0 4

2 0 1 4 3 1 9

3 1 0 1 1 4 8

4 1 4 3 3 5 16

5 1 5 5 11 39 62

sum 8 11 14 18 50 100

𝑄 = 5913.

Table 5. Contingency table of answers to question no. 8 (in%).

Item 8 Post-Test (in%)
Sum

Pre-Test (in%) 1 2 3 4 5

1 50 16 8 1 1 77

2 5 5 5 0 0 16

3 1 3 0 0 0 4

4 1 0 0 0 0 1

5 1 0 0 0 0 1

sum 59 24 14 1 1 100

Figure 4. Respondents’ answers to question no. 3 (when learning algorithms, I consider it important
to be able to adapt the algorithm to the problem) in pre-test and post-test (in%).

Mathematics 2022, 10, 3857 8 of 13

In Figure 4 we can see that the ability to adapt the adopted algorithm to the solved
problem was considered important only by 21% of students in the pre-test and up to 58%
of them considered it to be of little importance. In the post-test, 45% considered this ability
important and only 30% considered it unimportant. Even in the case of question no. 11
(When learning algorithms, I consider it important to be able to build my own algorithm.)
there has been a similar change in the evaluation by students. In the pre-test, they rated this
ability mostly as very unimportant, but in the post-test, they mostly rated it as important.

Through question no. 4 (when learning algorithms, I consider it important to have
a model example, based on which I will learn the algorithm) and questions no. 8 (when
learning algorithms, I consider it important to have a theoretical description of the algo-
rithm), we looked at what resources students consider important when learning algorithms.
Pre-test and post-test results for question no. 4 are listed in Table 4 and for questions no. 8
in Table 5 (Tables 4 and 5 are contingency tables expressed in %).

Table 4. Contingency table of answers to question no. 4 (in%).

Item 4 Post-Test (in%)
SumPre-Test (in%) 1 2 3 4 5

1 4 0 0 0 0 4
2 0 1 4 3 1 9
3 1 0 1 1 4 8
4 1 4 3 3 5 16
5 1 5 5 11 39 62

sum 8 11 14 18 50 100
Q = 5913.

Table 5. Contingency table of answers to question no. 8 (in%).

Item 8 Post-Test (in%)
SumPre-Test (in%) 1 2 3 4 5

1 50 16 8 1 1 77
2 5 5 5 0 0 16
3 1 3 0 0 0 4
4 1 0 0 0 0 1
5 1 0 0 0 0 1

sum 59 24 14 1 1 100
Q = 8200.

Given that the calculated value of the test criterion in both cases is less than the critical
value χ2

0.05(4) = 9488, at the significance level α = 0.05 we cannot reject the null hypothesis
H0. This means that the probability of occurrence of the considered learning sources is the
same after the implementation of the experiment as the probability of occurrence before the
implementation of the experiment. The observed differences are not statistically significant.
From contingency table (Table 4), we see that students in both pre-test and post-test consider
it very important that when learning algorithms, they have a sample example for the use of
the algorithm. Based on contingency table (Table 5), we can state that students consider to
have only a theoretical description of the algorithm to be of little importance.

5. Discussion

Due to great advances in science and technology, some algorithms are almost obsolete
and in practice more attention is paid to the construction of new, often more complex
algorithms. This progress requires the introduction of new concepts and ways of computa-
tional thinking [49], which also places new demands on the teaching of mathematics and
informatics. According to Araya et al. [50] students may not be very skilled in using basic
arithmetic algorithms to perform long divisions by large numbers. This frees up space in

Mathematics 2022, 10, 3857 9 of 13

teaching for teaching new concepts and algorithms, which are increasingly important for
the development of computational thinking.

Based on the analysis of the results obtained in the pre-test, we can state that before
solving the knight’s tour problem, the students considered those activities that correspond
to the first cognitive level of learning algorithms to be important when learning algo-
rithms [51]. Activities that correspond to the second and third cognitive levels, according
to [33], were considered to be of little importance. The results also show that students at the
beginning of the seminar algorithmic graph theory preferred to master algorithms without
understanding. This result corresponds to the research of [52], who found that students rely
on memorized procedures and rules that they often learn without understanding. Several
studies confirm that if a student has a template of solutions—learned algorithms, they try
to use them [27,53,54]. This way of learning algorithms and their use in solving problems
leads students to believe that mathematics is a subject where it is necessary to memorize a
lot of definitions and algorithms [55].

By analyzing the results of the post-test, we concluded that the inclusion of a solution
to a more demanding but didactically rich problem (in our case, the knight’s tour problem)
has the potential to encourage students to change the way they learn computational
algorithms. Statistical analysis of the differences in students’ answers to the same questions
in the post-test and pre-test confirmed that there is a statistically significant decrease in
the importance of activities that correspond to the first cognitive level. At the same time,
the importance of activities corresponding to the second and third cognitive levels of
learning algorithms has increased statistically significantly. In doing so, we came to the
same conclusions as Laudano et al. [56] that the learning of algorithms may in individual
cases take place at various levels simultaneously and not necessarily in a gradual manner
from a lower cognitive level to a higher level. To achieve this goal, a suitable choice of tasks
in the teaching of mathematics is needed [57].

In the post-test, the students considered remembering the algorithm as a whole (item 1)
and practicing it (item 9) to be important, but not as important as it was in the pre-test.
We think that this statistically significant decrease in the importance of these activities is
related to the increasing importance of understanding the individual steps of the algorithm
(item 2) and the ability to use the algorithm in more complex tasks (item 10). While in the
pre-test the students rated these activities as unimportant, in the pre-test they evaluated
them as important. The assessment of the ability to adapt the algorithm to a new task
(item 3) and to be able to construct one’s own algorithm (item 11) has also changed. If some
of its steps are forgotten, they can reconstruct the algorithm [33]. We find it interesting to
find out that students in both pre-test and post-test consider it very important to be able
to assign an algorithm to a given task (item 5). This result points to the fact that students
in learning mathematics are focused on solving problems, so they prefer problems that
are solved using algorithmic methods. Their effort in solving it is reduced to the correct
application of the algorithm leading definitely to the expected result [58,59]. This approach
to problem solving is supported by the prevailing linearity of problem solving. Most
school assignments are built in such a way as to encourage students to follow a structured,
hierarchical, and linear path to the outcome. Therefore, it is not surprising that they
feel less confident if they are to address a problem where this sequence is disrupted [60].
Therefore, we consider it appropriate that students have more experience with tasks whose
solution procedures contain elements of heuristics. A trial and error “heuristic” was used
to solve the knight’s tour problem. For example, the trial-and-error strategy is a strategy
without high cognitive demands, which is commonly used in mathematics lessons and in
everyday life [61]. Therefore, this strategy is suitable for students becoming acquainted
with the elements of heuristics, and its use requires problem analysis and understanding of
the algorithm creation process [62]. By using heuristics within algorithms, students will
gradually come to the realization that the certainty offered by the algorithm is stronger
if they acquire the algorithm with understanding. Thus, it is possible to achieve the

Mathematics 2022, 10, 3857 10 of 13

integration of students procedural and conceptual knowledge, which brings an increase in
their success in solving tasks [37,63,64].

Even though the knight’s tour problem contains heuristics and the need to atomize
the task, students in both pre-test and post-test consider it unimportant to analyze the
algorithm and be able to evaluate the possibilities of its use in various problems. Although
assessment and analysis are commonly perceived at a higher level of cognition than
comprehension (e.g., [37]), there are probably more factors behind students’ attitudes
related to the way mathematics is taught. For example, Fuson [65] emphasizes the problem
of an overemphasis on instrumental knowledge at the expense of relational knowledge in
teaching. According to Benton [66] the obligation to follow a given method could hinder
the development of children’s thinking and discourage logical thinking. We consider
students’ lack of interest in solving long and complex tasks to be an equally key factor [67].
These factors cause students to have a strong concentration on mastering the algorithm
in order to achieve success in solving problems. This concentration was also shown in
the responses to items 4 and 8, where they consider it very important to have a model
example, but for them it is of little importance to have a theoretical description of the
algorithm. This can be interpreted as meaning that when students learn algorithms, they
prefer to imitate the finished algorithm before thinking and creating their own algorithm.
According to Araya et al. [49], it is appropriate to use more complex and advanced tasks in
the teaching mathematics, which require creative procedures at the expense of the linearity
of the solution. Because even more complex tasks within their analysis can be divided into
simpler tasks—the task of atomizing. Atomization then leads to the solution of simple
subtasks, which students prefer. This type of task is also the knight’s tour problem on
the chessboard. In our research, we focused on verifying the motivational potential of
student involvement in the creation of a more complex computational algorithm, which
is also a limiting factor in the interpretation of results. In further research, it would be
necessary to investigate to what extent it is possible to implement more complex algorithms
in the teaching of mathematics and what way will lead to the acquisition of computational
algorithms at higher cognitive levels.

6. Conclusions

Based on the research, we can state in conclusion that the development of computa-
tional thinking of students is already possible in the teaching of mathematical subjects.
The implementation of the solution to the knight’s tour problem to the seminar and the
subsequent analysis of the implementation confirmed that it is not necessary or appropriate
to only pass on the finished algorithms to students. It was the students’ involvement in
creating the algorithm that encouraged students to change the way they learn algorithms.
The decision-making and return algorithm have proven to be suitable to disrupt the pre-
vailing linearity of algorithms that students are accustomed to in the normal teaching
of mathematics. In the future, it might be appropriate to experimentally examine which
elements of algorithms have an impact on changing the way algorithms are acquired. This
could provide additional important data for the development of computational thinking in
teaching mathematics.

Author Contributions: Data curation, G.P.; formal analysis, V.Ď.; investigation, D.G.; methodology,
D.G.; project administration, A.T.; resources, G.P.; supervision, A.T.; validation, V.Ď. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Mathematics 2022, 10, 3857 11 of 13

Acknowledgments: This work was supported by the Slovak Research and Development Agency
under the contract No. APVV-14-0446, the Cultural and Educational Grant Agency of the Ministry
of Education, Science, Research and Sports of the Slovak Republic No. KEGA 015UKF-4/2021 and
the Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak
Republic and the Slovak Academy of Sciences No. VEGA 1/0216/21.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Türker, P.M.; Pala, F.K. The effect of algorithm education on students’ computer programming self-efficacy perceptions and

computational thinking skills. Int. J. Comput. Sci. Educ. Sch. 2020, 3, 19–32.
2. Ching, Y.H.; Hsu, Y.C.; Baldwin, S. Developing computational thinking with educational technologies for young learners. Tech.

Trends 2018, 62, 563–573. [CrossRef]
3. International Society for Technology in Education-ISTE. Computational Thinking for All. Available online: https://www.iste.

org/explore/articleDetail?articleid=152 (accessed on 23 August 2021).
4. Chondrogiannis, E.; Symeonaki, E.; Papachristos, D.; Loukatos, D.; Arvanitis, K.G. Computational Thinking and STEM in

Agriculture Vocational Training: A Case Study in a Greek Vocational Education Institution. Eur. J. Investig. Health Psychol. Educ.
2021, 11, 230–250. [CrossRef] [PubMed]

5. Knuth, D.E. Algorithmic thinking and mathematical thinking. Am. Math. Mon. 1985, 92, 170–181. [CrossRef]
6. Leron, U.; Dubinsky, E. An abstract algebra story. Am. Math. Mon. 1995, 102, 227–242. [CrossRef]
7. Misfeldt, M.; Ejsing-Duun, S. Learning mathematics through programming: An instrumental approach to potentials and pitfalls.

In CERME 9-Ninth Congress of the European Society for Research in Mathematics Education; The European Society for Research in
Mathematics Education (ERME): Prague, Czech Republic, 2015; pp. 2524–2530.

8. Denning, P.J. The profession of IT Beyond computational thinking. Commun. ACM 2009, 52, 28–30.
9. Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33–35. [CrossRef]
10. Rowe, E.; Almeda, M.V.; Asbell-Clarke, J.; Scruggs, R.; Baker, R.; Bardar, E.; Gasca, S. Assessing implicit computational thinking

in Zoombinis puzzle gameplay. Comput. Hum. Behav. 2021, 120, 106707. [CrossRef]
11. Jona, K.; Wilensky, U.; Trouille, L.; Horn, M.S.; Orton, K.; Weintrop, D.; Beheshti, E. Embedding computational thinking in science,

technology, engineering, and math (CT-STEM). In Future Directions in Computer Science Education Summit Meeting; Stanford
University: Orlando, FL, USA, 2014.

12. Orton, K.; Weintrop, D.; Beheshti, E.; Horn, M.; Jona, K.; Wilensky, U. Bringing Computational Thinking into High School Mathematics
and Science Classrooms; International Society of the Learning Sciences: Singapore, 2016.

13. Repenning, A.; Webb, D.C.; Koh, K.H.; Nickerson, H.; Miller, S.B.; Brand, C.; Repenning, N. Scalable game design: A strategy to
bring systemic computer science education to schools through game design and simulation creation. ACM Trans. Comput. Educ.
(TOCE) 2015, 15, 1–31. [CrossRef]

14. Tatar, D.; Harrison, S.; Stewart, M.; Frisina, C.; Musaeus, P. Proto-computational thinking: The uncomfortable underpinnings. In
Emerging Research, Practice, and Policy on Computational Thinking; Springer: Cham, Switzerland, 2017; pp. 63–81.

15. Futschek, G. Algorithmic thinking: The key for understanding computer science. In International Conference on Informatics in
Secondary Schools-Evolution and Perspectives; Springer: Berlin/Heidelberg, Germany, 2006; pp. 159–168.

16. Broley, L.; Caron, F.; Saint-Aubin, Y. Levels of programming in mathematical research and university mathematics education. Int.
J. Res. Undergrad. Math. Educ. 2018, 4, 38–55. [CrossRef]

17. Çamoğlu, K. Algorithm, 6th ed.; Kodlab: İstanbul, Turkey, 2018.
18. Kiss, G.; Arki, Z. The influence of game-based programming education on the algorithmic thinking. Procedia-Soc. Behav. Sci. 2017,

237, 613–617. [CrossRef]
19. Knuth, D.E. Computer science and its relation to mathematics. Am. Math. Mon. 1974, 81, 323–343. [CrossRef]
20. Anderson, J.R. Acquisition of cognitive skill. Psychol. Rev. 1982, 89, 369–406. [CrossRef]
21. Star, J.R. Reconceptualizing procedural knowledge. J. Res. Math. Educ. 2005, 36, 404–411.
22. Lithner, J. Principles for designing mathematical tasks that enhance imitative and creative reasoning. ZDM 2017, 49, 937–949.

[CrossRef]
23. Lukhele, R.B.; Murray, H.; Olivier, A. Learners’ understanding of the addition of fractions. In Proceedings of the Fifth Annual

Congress of the Association for Mathematics Education of South Africa; Port Elizabeth Technikon: Port Elizabeth, South Africa, 1999;
Volume 1, pp. 87–97.

24. Leung, F.K.S. Mathematics education in East Asia and the West: Does culture matter? In Mathematics Education in Different Cultural
Traditions: A Comparative Study of East Asia and the West; Leung, F.K.S., Graf, K.-D., Lopez-Real, F.J., Eds.; Springer: New York, NY,
USA, 2006; pp. 21–46.

25. Bergqvist, T.; Lithner, J. Mathematical reasoning in teachers’ presentations. J. Math. Behav. 2012, 31, 252–269. [CrossRef]
26. Shield, M.; Dole, S. Assessing the potential of mathematics textbooks to promote deep learning. Educ. Stud. Math. 2013, 82,

183–199. [CrossRef]

http://doi.org/10.1007/s11528-018-0292-7
https://www.iste.org/explore/articleDetail?articleid=152
https://www.iste.org/explore/articleDetail?articleid=152
http://doi.org/10.3390/ejihpe11010018
http://www.ncbi.nlm.nih.gov/pubmed/34542461
http://doi.org/10.1080/00029890.1985.11971572
http://doi.org/10.1080/00029890.1995.11990563
http://doi.org/10.1145/1118178.1118215
http://doi.org/10.1016/j.chb.2021.106707
http://doi.org/10.1145/2700517
http://doi.org/10.1007/s40753-017-0066-1
http://doi.org/10.1016/j.sbspro.2017.02.020
http://doi.org/10.1080/00029890.1974.11993556
http://doi.org/10.1037/0033-295X.89.4.369
http://doi.org/10.1007/s11858-017-0867-3
http://doi.org/10.1016/j.jmathb.2011.12.002
http://doi.org/10.1007/s10649-012-9415-9

Mathematics 2022, 10, 3857 12 of 13

27. Boesen, J.; Helenius, O.; Bergqvist, E.; Bergqvist, T.; Lithner, J.; Palm, T.; Palmberg, B. Developing mathematical competence:
From the intended to the enacted curriculum. J. Math. Behav. 2014, 33, 72–87. [CrossRef]

28. Freudenthal, H. Didactical Phenomenology of Mathematical Structures; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 1986; Volume 1.

29. Hiebert, J.; Carpenter, T. Learning and teaching with understanding. In Handbook of Research on Mathematics Teaching and Learning;
Grouws, D., Ed.; Simon Schuster Macmillan: New York, NY, USA, 1992; pp. 65–97.

30. Moreno, R. Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based
multimedia. Instr. Sci. 2004, 32, 99–113. [CrossRef]

31. Oakes, J.; Lipton, M.; Anderson, L.; Stillman, J. Teaching to Change the World; Routledge: New York, NY, USA, 2018. [CrossRef]
32. Brousseau, G. Theory of Didactical Situations in Mathematics: Didactique des Mathématiques, 1970–1990; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2006; Volume 19.
33. Fan, L.; Bokhove, C. Rethinking the role of algorithms in school mathematics: A conceptual model with focus on cognitive

development. ZDM 2014, 46, 481–492. [CrossRef]
34. Jonsson, B.; Norqvist, M.; Liljekvist, Y.; Lithner, J. Learning mathematics through algorithmic and creative reasoning. J. Math.

Behav. 2014, 36, 20–32. [CrossRef]
35. Wirebring, L.K.; Lithner, J.; Jonsson, B.; Liljekvist, Y.; Norqvist, M.; Nyberg, L. Learning mathematics without a suggested solution

method: Durable effects on performance and brain activity. Trends Neurosci. Educ. 2015, 4, 6–14. [CrossRef]
36. Naseer, M.; Zhang, W.; Zhu, W. Prediction of coding intricacy in a software engineering team through machine learning to ensure

cooperative learning and sustainable education. Sustainability 2020, 12, 8986. [CrossRef]
37. Rittle-Johnson, B.; Star, J.R.; Durkin, K. Developing procedural flexibility: Are novices prepared to learn from comparing

procedures? Br. J. Educ. Psychol. 2012, 82, 436–455. [CrossRef]
38. Kilpatrick, J.; Swafford, J.; Findell, B. Adding it Up: Helping Children Learn Mathematics; National Research Council, Ed.; National

Academy Press: Washington, DC, USA, 2001; Volume 2101.
39. Wegener, I. Branching Programs and Binary Decision Diagrams: Theory and Applications; Society for Industrial and Applied

Mathematics: Philadelphia, PA, USA, 2000; ISBN 0-898-71458-3.
40. Kondrak, G.; Van Beek, P. A theoretical evaluation of selected backtracking algorithms. Artif. Intell. 1997, 89, 365–387. [CrossRef]
41. Van Beek, P. Backtracking search algorithms. In Foundations of Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 2006;

Volume 2, pp. 85–134.
42. Wirth, N. Algorithms and Data Structures, 2nd ed.; Alfa: Bratislava, Slovakia, 1989; p. 488, ISBN 80-05-00153-3. (In Slovak)
43. Dewey, J. How We Think; D. C Heath Co Publishers: Chicago, IL, USA, 1910.
44. Stuart, A. A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 1955, 42, 412–416. [CrossRef]
45. Maxwell, A.E. Comparing the classification of subjects by two independent judges. Br. J. Psychiatry 1970, 116, 651–655. [CrossRef]
46. Abbasi, N.; Dokoohaki, S.; Jamali, H. The Application of Stuart-Maxwell Test in Determining the Identically Distributed Correct

Choice. Appl. Math. Sci. 2009, 3, 447–450.
47. Agresti, A. Categorical Data Analysis, 3rd ed.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2013; p. 752. ISBN 0470463635.
48. McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12,

153–157. [CrossRef]
49. Denning, P.J.; Tedre, M. Computational Thinking; Mit Press: Cambridge, MA, USA, 2019; ISBN 9780262536561.
50. Araya, R.; Isoda, M.; González, O. A Framework for Computational Thinking in Preparation for Transitioning to a Super Smart

Society. J. Southeast Asian Educ. 2020, 1, 1–16.
51. Lisarelli, G.; Baccaglini-Frank, A.; Di Martino, P. From how to why: A quest for the common mathematical meanings behind two

different division algorithms. J. Math. Behav. 2021, 63, 100897. [CrossRef]
52. Fuson, K.C.; Kalchman, M.; Bransford, J.D. Mathematical understanding: An introduction. In How Students Learn: History,

Mathematics, and Science in the Classroom; National Research Council: Washington, DC, USA, 2005; pp. 217–256.
53. Hiebert, J. What research says about the NCTM standards. In A Research Companion to Principles and Standards for School

Mathematics; National Council of Teachers of Mathematics: Reston, VA, USA, 2003; pp. 5–23.
54. Lithner, J. Students’ mathematical reasoning in university textbook exercises. Educ. Stud. Math. 2003, 52, 29–55. [CrossRef]
55. Escalera Chávez, M.E.; Moreno García, E.; Rojas Kramer, C.A. Confirmatory Model to Measure Attitude towards Mathematics in

Higher Education Students: Study Case in SLP Mexico. Int. Electron. J. Math. Educ. 2019, 14, 163–168.
56. Laudano, F.; Tortoriello, F.S.; Vincenzi, G. An experience of teaching algorithms using inquiry-based learning. Int. J. Math. Educ.

Sci. Technol. 2020, 51, 344–353. [CrossRef]
57. Olteanu, C. Reflection-for-action and the choice or design of examples in the teaching of mathematics. Math. Educ. Res. J. 2017, 29,

349–367. [CrossRef]
58. Căprioară, D. Problem solving-purpose and means of learning mathematics in school. Procedia-Soc. Behav. Sci. 2015, 191,

1859–1864. [CrossRef]
59. Amar, G.I.; Suranto, S. The Use of Creative Problem Solving Based Genetic Mutation Module in Higher Education. Int. J. High.

Educ. 2021, 10, 33–45. [CrossRef]
60. García, T.; Boom, J.; Kroesbergen, E.H.; Núñez, J.C.; Rodríguez, C. Planning, execution, and revision in mathematics problem

solving: Does the order of the phases matter? Stud. Educ. Eval. 2019, 61, 83–93. [CrossRef]

http://doi.org/10.1016/j.jmathb.2013.10.001
http://doi.org/10.1023/B:TRUC.0000021811.66966.1d
http://doi.org/10.4324/9781351263443
http://doi.org/10.1007/s11858-014-0590-2
http://doi.org/10.1016/j.jmathb.2014.08.003
http://doi.org/10.1016/j.tine.2015.03.002
http://doi.org/10.3390/su12218986
http://doi.org/10.1111/j.2044-8279.2011.02037.x
http://doi.org/10.1016/S0004-3702(96)00027-6
http://doi.org/10.1093/biomet/42.3-4.412
http://doi.org/10.1192/bjp.116.535.651
http://doi.org/10.1007/BF02295996
http://doi.org/10.1016/j.jmathb.2021.100897
http://doi.org/10.1023/A:1023683716659
http://doi.org/10.1080/0020739X.2019.1565453
http://doi.org/10.1007/s13394-017-0211-9
http://doi.org/10.1016/j.sbspro.2015.04.332
http://doi.org/10.5430/ijhe.v10n3p33
http://doi.org/10.1016/j.stueduc.2019.03.001

Mathematics 2022, 10, 3857 13 of 13

61. Elia, I.; van den Heuvel-Panhuizen, M.; Kolovou, A. Exploring strategy use and strategy flexibility in non-routine problem
solving by primary school high achievers in mathematics. ZDM 2009, 41, 605–618. [CrossRef]

62. Abdullah, A.H.; Rahman, S.N.S.A.; Hamzah, M.H. Metacognitive skills of Malaysian students in non-routine mathematical
problem solving. Bolema: Bol. De Educ. Matemática 2017, 31, 310–322. [CrossRef]

63. Baroody, A.J. The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge.
In The Development of Arithmetic Concepts and Skills: Constructing Adaptive Expertise; Baroody, A.J., Dowker, A., Eds.; Erlbaum:
Mahwah, NJ, USA, 2003; pp. 1–34.

64. Rittle-Johnson, B.; Schneider, M. Developing conceptual and procedural knowledge of mathematics. In Oxford Handbook of
Numerical Cognition; Oxford University Press: Oxford, UK, 2015; pp. 1118–1134. [CrossRef]

65. Fuson, K.C. A Forum for Researchers: Issues in Place-Value and Multidigit Addition and Subtraction Learning and Teaching for
Research on Mathematics Teaching. J. Res. Math. Educ. 1990, 21, 273–280. [CrossRef]

66. Benton, L.; Saunders, P.; Kalas, I.; Hoyles, C.; Noss, R. Designing for learning mathematics through programming: A case study
of pupils engaging with place value. Int. J. Child-Comput. Interact. 2018, 16, 68–76. [CrossRef]

67. Phonapichat, P.; Wongwanich, S.; Sujiva, S. An analysis of elementary school students’ difficulties in mathematical problem
solving. Procedia-Soc. Behav. Sci. 2014, 116, 3169–3174. [CrossRef]

http://doi.org/10.1007/s11858-009-0184-6
http://doi.org/10.1590/1980-4415v31n57a15
http://doi.org/10.1093/oxfordhb/9780199642342.013.014
http://doi.org/10.5951/jresematheduc.21.4.0273
http://doi.org/10.1016/j.ijcci.2017.12.004
http://doi.org/10.1016/j.sbspro.2014.01.728

	Introduction
	Algorithms and Their Learning
	The Role of the Knight’s Tour Problem and Its Didactic Potential
	Method
	Description of the Method
	Data Analysis and Results

	Discussion
	Conclusions
	References

