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ABSTRACT The study of physiological changes recorded by wearable devices during physical exercises
belongs to very important research topics in neurology for the detection of motion disorders or monitoring
of the fitness level during sports activities. This paper contributes to this area with studies of the effect of
face masks and respirators on blood oxygen concentration, breathing frequency, and the heart rate changes.
Experimental data sets include 296 segments of their total length of 60 hours, recorded on a home exercise
bike under different motion conditions. Wearable instruments with oximetric, heart rate, accelerometric,
and thermal camera sensors were used to fill the own database of signals recorded with selected sampling
frequencies. The proposed methodology includes fundamental signal and image processing methods for
signal analysis and machine learning tools for labeling image components and detecting facial temperature
changes. Results show the minimal effect of mask wearing on blood oxygen concentration but its substantial
influence on the breathing frequency and the heart rate. The use of a respirator substantially increased
the respiratory rate for the given set of experiments under the load. This indicates how wearable sensors,
computational intelligence, and machine learning can be used for motion monitoring and data analysis of
signals recorded in different conditions.

INDEX TERMS Motion monitoring, wearable sensors, blood oxygen concentration, breathing analysis,
computational intelligence, machine learning, classification.

I. INTRODUCTION
The analysis of motion patterns acquired under different con-
ditions and studies of physiological functions belongs to very
important research topics with significant applications in neu-
rology, rehabilitation, and monitoring of sport activities [1],
[2], [3], [4]. Physiological signals include the heart rate, blood
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oxygen concentration [5], [6], breathing rate, acceleration,
and positioning records using camera systems and satellite
navigation [7] in many cases.

There are specific studies that are devoted to the influence
of surgical mouthpieces and face masks [8], [9] on dysp-
noea and cardiorespiratory parameters during different ways
of movement. Some results show that face masks have a
minimal impact during short exercise tests [10], [11] while
other papers [12] point to a reduction of the blood oxygen
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concentration, an increase in the frequency of the heartbeat,
and a sensation of shortness of breath.

Measurement techniques include the use of wearable sen-
sors [13], [14], thermal and depth cameras, oximeters, and
heart rate sensors to acquire specific body signals and video-
records [6], [15], [16]. The home exercise bike forms a
very useful device for recording these data under selected
loads and for performing sets of experiments [17], [18].
The results can be further verified during cycling in real
conditions [19].

Different microelectromechanical sensor units (MEMS),
accelerometers, smartphones, and smartwatches include fur-
ther sensors that can be used for biometric data acquisition.
Associated problems include the selection of the sampling
frequency and the choice of communication links for trans-
mitting the data.

Appropriate computational methods of signal and image
processing together with machine learning tools are then
applied to extract the desired information. These computa-
tional tools include methods of signal analysis in the time,
frequency, and scale domains [20], [21], methods of digital
filtering to reject noise components [22], and computational
intelligence methods for extracting signal features.

The present paper is devoted to the analysis of blood oxy-
gen concentration, heart rate estimation, breathing frequency
evaluation, and processing of accelerometric signals recorded
during exercises on a home exercise bike. Specific adap-
tive methods are proposed for detecting breathing frequency
using infrared thermography and video records of the facial
area [15], [23], [24]. The methodology proposed for the anal-
ysis of these multimodal signals [25] includes their time-
synchronisation, detection of specific image components for
breathing rate estimation, and the analysis of physiological
signals during different body loads.

II. METHODS
A. DATA ACQUISITION
All experiments were done on a home exercise bike with data
acquired during different motion patterns. Sensors included a
pulse oximeter for blood concentration and heart rate record-
ing, thermal camera to follow breathing, and an accelerometer
inside a mobile phone to analyze motion data.

The global analysis [26] of blood oxygen concentration,
heart rate changes, and breathing analysis were done dur-
ing experiments of 16 individuals (11 males and 5 females
between 24 and 48 years old) on a home exercise bike.
Physiological data of separate segments were recorded dur-
ing 64 load and 64 rest periods that were 9 and 6 minutes
long, respectively. Half of experiments were done with the
uncovered face and the second one with the FFP2 respi-
rator. The whole study includes 1920 minutes of recorded
signals.

The more detail analysis of changes of blood oxygen con-
centration, heart rate, and breathing frequencywere done for a
selected individual during (i) seven experiments without any

FIGURE 1. Principle of the blood oxygen concentration measurement
with the reflectivity or transmissivity sensor, presenting (a) the use of two
light sources (RED and infrared IR) for the tissue illumination with the
light absorption detection and (b) signal processing for system calibration
and for the estimation of the heart rate and blood oxygen concentration.

cover on the face, (ii) seven experiments with a three-layer
face mask, and (iii) seven experiments with a five-layer FFP2
respirator to study the effect of a face cover on physiological
functions. Each experiment was 80minutes long and included
four observations. Each of them was composed of one seg-
ment recorded with a load and the following one acquired
during resting, each of them 10 minutes long. The whole
study is based on 168 segments with data recorded during
1680 minutes.

The blood oxygen concentration and the heart rate mea-
surement were recorded by a pulse oximeter [27], [28], [29],
[30], [31] with the reflectivity or transmissivity sensor and the
sampling frequency of 1 Hz. The sensor for the blood oxygen
concentration (Fig. 1) is a non-invasive device with two light
sources that include red and infrared light of 650 nm and
940 nm, respectively. The tissue is illuminated and another
sensor (light detector) receives either reflected or transmit-
ted light that has not been absorbed or scattered. The sensor
uses a non-invasive principle, photoplethysmography (PPT),
to detect blood volumetric changes in the peripheral cir-
culation. The observed values with their timestamps were
time-synchronised with the mobile phone and transmitted
with their comma separated values (CSV) through wireless
communication links.

Changes of breathing rate were followed by an infrared
thermal camera in front of the individual. The time evolution
of temperature changes was acquired in the facial area of
all video recordings. The video record of the thermal cam-
era acquired for each experiment was transformed into a
sequence of images with a resolution of 240 by 320 elements
and frame rate of 10 fps, which makes for more than one
million images available for data analysis. Each image was
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FIGURE 2. The sequence of subsequent infrared thermal images recorded
without the mask with regions of interests around the nose.

then reduced by 20% on each side to optimise the processing
time. Further reduction was achieved by a change of frame
rate to 2 Hz for analysis of images with uncovered face owing
to the sampling theorem and maximum breathing rate of
0.7 Hz for these experiments. Temperature changes caused
by breathing were then detected either inside the nose or on
the face mask and respirator. Fig. 2 presents a selected set
of thermal images with regions of interest (ROI) acquired
without any face cover that includes the nose area for the time
evolution of thermal changes and evaluation of the breathing
frequency. The processing of the thermal images with the face
mask and respirator is easier, as the region of interest is much
larger. Fig. 3 presents a selected thermal image matrix with
the associated thermo bar and the time evolution of the mean
temperature values in the region with its highest changes. The
association of image shadeswith temperatureswas performed
by a neural network model [15] as well as the detection of the
temperature inside each thermo frame.

Accelerometric signals were recorded by the sensor of the
mobile phone located in the spine area of the body, a position
which has higher discriminative abilities in comparison to
other positions [3], [32], [33]. The sampling frequency of the
mobile Matlab and the phone sensor was 100 Hz during all
cycling experiments. A sample record of these data during the
load and the rest periods is presented in Fig. 4.
These procedures involving human participants were in

accordance with the ethical standards of the Institutional
research committee and with the 1964 Helsinki Declaration
and its later amendments.

B. SIGNAL PROCESSING
The mathematical methods of the data processing are closely
related to the properties of the sensors used for their acquisi-
tion. But in general, de-noising, analysis in the selected trans-
form domain, and the extraction of features form common
problems.

Oximeters are used for the measurement of the oxygen
saturation, defined as the amount of oxygen dissolved in
the blood. A simple diagram of this system is presented in

FIGURE 3. Main steps of thermal video sets including (i) a selected
thermal image matrix with the associated thermo bar that associates
shade levels and temperatures, (b) thermal image areas with highest
temperature gradients, and (c) the time evolution of the mean
temperatures in the region with their highest changes during cycling
experiments performed with different loads.

FIGURE 4. Accelerometric signals recorded on the home exercise bike
during the load/rest periods and the mobile MATLAB screen showing
separate data values.

Fig. 1. Oxygenated hemoglobin (HbO2) has a higher absorp-
tion for infrared light while deoxygenated hemoglobin (Hb)
has a higher absorption for red light. The extinction coeffi-
cient has two components: theDCxx component, representing
time-independent tissue absorption, and theACxx component,
related to the pulsative arterial blood that has its maximum
ACmaxxx and minimum ACminxx for the specific wavelength
xx. This fact is used for the evaluation of the absorption
coefficient [28] defined by the following relation using val-
ues for the red (xx = 650 nm) and infrared (xx = 940 nm)
light:

R =
(ACmax660 − ACmin660)/DC660

(ACmax940 − ACmin940)/DC940
(1)

The blood oxygen concentration is related to this relation by
the calibration empirical formula. A typical one is defined by
the following relation [28]:

SP=10.0002 ∗ R3−52.887 ∗ R2+26.871∗R+98.283 (2)

The principle of the detection of the ROI of the nose area in
infrared thermal images used for estimating the breathing fre-
quency for an uncovered face is presented in Fig. 2 showing
results of automatic ROI labeling. The algorithmic solution is
based on the semantic segmentation [34], [35] that can predict
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the semantic category of each image pixel from a given set of
labels using deep learning. Processing of these records in the
Matlab environment includes:
• Manual detection of ROIs for a small number of images,
training of the model, and evaluation of parameters for
automatic detection of these labeled areas [36];

• The implementation of the proposed model in an auto-
matic image labeler and its application to detecting the
bounding boxes of the ROIs for the whole extensive set
of facial images;

• Evaluation of themean shade level in each bounding box
during the different activity loads.

Facial images with a covered face were processed by the
proposed adaptive algorithm [15] that detected the region
with the highest changes of temperature. In all cases, the
mean values of the shade in the associated bounding box
were evaluated. The association of image shades with tem-
peratures was then performed by the neural network model
of [15] to detect the mean temperatures inside each thermo
frame.

The accelerometric components axq(n), ayq(n), and azq(n)
recorded in three directions were then used to evaluate its
modulus:

aq(n) =
√
axq(n)2 + ayq(n)2 + azq(n)2 (3)

for all values of n = 0, 1, 2, · · · ,N − 1 in each segment
q = 1, 2, · · · ,Q composed of N values to evaluate values
invariant to the rotation of the sensor.

The time series {x(n)}N−1n=0 of temperature values and accel-
eration in each segment were then smoothed by the selected
finite impulse response filter (FIR) of order M = 60 defined
by the relation:

y(n) =
M−1∑
k=0

b(k) x(n− k) (4)

with the selected cutoff frequency to evaluate a new sequence
{y(n)}N−1n=0 for all values of n = 0, 1, 2, · · · ,N − 1 and for
filter coefficients {b(k)}M−1k=0 .
The breathing frequency was then evaluated from the spec-

trum of this sequence estimated by the short-time Fourier
transform (STFT) of each window L samples long as follows:

Yw(k) =
∑
n∈Sw

y(n) exp(−j k n 2 π/L) (5)

for the sequence of signal values in each (overlapping)
analysing STFTwindoww of the slected seqment qwith their
indices in the set Sw.
The accelerometric data were processed in the spectral

domain as well. The relative energy Eq in the frequency band
〈fc1, fc2〉 was evaluated by

Eq=

∑
k∈8

∣∣Yq(k)∣∣2∑N/2
k=0

∣∣Yq(k)∣∣2 , (6)

FIGURE 5. The evolution of (a) the blood O2 concentration and (b) the
heart rate of 16 individuals during the load and rest periods for
experiments without any face cover and with the FFP2 respirator.

where 8 is the set of indices for the frequency components
fk ∈ 〈fc1, fc2〉 for each segment q.

III. RESULTS
All signals acquired during experiments were time-
synchronised, preprocessed by digital filtering, and seg-
mented in the computational environment of MATLAB
2022a.

Results of the global analysis of experiments on the home
exercise bike are presented in Fig. 5. Changes of the blood O2
concentration and the heart rate of 16 individuals during the
load and rest periods with mean values and experiments with-
out any face cover andwith the FFP2 respirator are very close.
Table 1 presents mean values and standard deviations of the
heart rate and breathing frequencies for the subset of males,
females, and thewhole set of 16 individuals for different types
of experiments. Physiological features are slightly better for
experiments without the face cover but these changes are
negligible.

TABLE 1. Mean values (Mean) and standard deviations (STD) of the heart
rate and breathing frequencies for the subset of males, females, and the
whole set of 16 individuals for experiments without any face cover
(NoCover ) and with the FFP2 respirators (Resp).

More detail analysis of a selected individual in Fig. 6
presents the evolution of the blood oxygen concentration
and the heart rate during the load and rest periods with the
face covered by a respirator. In all cases, the mean value
of the blood oxygen concentration is slightly higher during
the rest period than during the load period. More detailed
results both for a face mask and a respirator are presented in
Table 2.
Figure 7 presents the evolution of the temperature in the

nose area as well as the evolution of the breathing frequency,
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TABLE 2. Specification of segments for the mean blood O2 concentration, mean heart rate, breathing frequency, and acceleration in the selected
frequency range for load (L) and rest (R) segments with no face cover (Face), with a face mask (Mask) and with a respirator (Resp) evaluated during the
second half of each segment.

FIGURE 6. The evolution of mean physiological characteristics during the
load and rest periods on the home exercise bike presenting (a) the blood
O2 concentration and (b) the heart rate.

FIGURE 7. Facial thermo data processing presenting (a) the temperature
evolution in the nose area and (b) the breathing frequency evolution for
the load and rest regions evaluated for 18 segments with their mean
values acquired on the home exercise bike without any cover of the
face.

both for periods under load and resting, evaluated for 36 seg-
ments with their mean values acquired on the home exercise
bike without any face cover. The frame rate of 2 Hz was
sufficient in this case since the mean frequency change was
0.34 Hz (20.7 bpm) during the last minute of the exercise in
the load segment and 0.19 Hz (11.6 bpm) in the last minute of
the rest segment. Figure 8 presents facial thermo data process-
ing recorded with a face cover, presenting the evolution of the

FIGURE 8. Facial thermo data processing presenting (a) the mean
temperature evolution for 4 subsequent tests, (b) the mean temperature
evolution of 4 tests, and (c) the mean breathing frequency evolution for
the load and rest regimes and the face cover.

mean temperature for 4 subsequent observations of a selected
experiment, the evolution of the mean temperature and that
of the mean breathing frequency, both for the load and rest
periods. A comparison of the breathing rate for the covered
and uncovered face is presented in Table 2. The breathing
rate for the load segment is 89% higher than the experiment
with the respirator in comparison with that without any face
cover.

Figure 9 presents the time and frequency evolution of
accelerometric data for four load and four rest periods
acquired on the home exercise bike for a selected experiment
and the respirator use. Spectral components for load and rest
periods are presented in Figs. 9(a) and (b), respectively, with
their different layouts. More detailed statistics are presented
in Table 2 with a comparison of the results obtained for
the covered and uncovered face. The relative percentage of
energy in the frequency range of 2–8 Hz is evaluated as a fea-
ture of the motion pattern and can be used for the subsequent
classification.

Three complete datasets recorded without any face cover,
with a face mask, and with a respirator are stored at the IEEE
DataPort (http://ieee-dataport.org/9578) for further investiga-
tion. This repository includes also theMatlab source code and
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FIGURE 9. Accelerometric data presenting (a) the time evolution of
accelerometry, (b,c) the frequency evolution for the load and rest regimes
acquired on the home exercise bike.

FIGURE 10. Comparison of physiological characteristics for uncovered
face, face mask, and respirator use for experiments during (a) the load
and (b) the rest period on the exercise bike.

data for demonstration of blood concentration, heart rate, and
breathing data extraction that generate the graphical video
abstract of the paper.

IV. DISCUSSION
Global experiments performed for 16 individuals and
128 segments proved nearly no effect of respirators on the
blood oxygen concentration and the heart rate. The increase
of the heart rate by about 3.2 % was compensated by the
increase of the breathing frequency by about 25 %.

Figure 10 presents detail analysis of physiological char-
acteristics summarised in Table 2. Mean values of specific
features for segments with uncovered face, face mask and
respirator are compared both for segments recorded during
the load and rest in Figs. 10(a) and (b), respectively. The
results of the set of experiments on the exercise bike show that
the blood oxygen concentration is nearly the same for exper-
iments with an uncovered face, with a face mask, and with a
respirator. The heart rate for experiments with a respirator is
higher both for load and rest experiments in comparison with
the other ones. The two-sample t-test was evaluated to test
the decision for the null hypothesis that blood concentration

and heart rate data in the middle of the load/rest period of
signals recorded without any face cover and with either a face
mask or a respirator come from independent random samples
with equal means. This hypothesis was accepted at the 5 %
significance level.

The breathing frequency was estimated from the tempera-
ture changes in the facial area recorded by the thermal cam-
era. The breathing rate was higher for experiments with a face
mask or respirator. This result explains the nearly unaffected
concentration of the blood oxygen concentration. The mean
breathing rate during the load period increased from 0.19 Hz
(11.4 bpm) for the uncovered face to 0.65 Hz (39.0 bpm) with
the use of a respirator which represents 89 % for the given set
of experiments.

The relative motion energies evaluated from the accelero-
metric data are very close for all kinds of experiments. The
use of this characteristic is in the subsequent classification of
different kinds of motion, important in neurology and reha-
bilitation for monitoring and analysis of motion patterns.

V. CONCLUSION
This paper presents the use of computational methods for pro-
cessing physiological data during motion on a home exercise
bike with an uncovered face, with a face mask, and with a
respirator, under different motion conditions. Its results show
nearly no effect of the face cover on blood oxygen concentra-
tion, which is compensated for by the higher breathing rate.

These results are concordant with those of other studies
that confirm the minimal impact of face masks wearing dur-
ing short time periods [10], [11], [37], [38]. Latest extensive
studies investigated the effect of face masks [39] while work-
ing during the long time periods of 12-h shifts for the blood
saturation and heart rate. A small median decrease of blood
oxygen concentration of 1 % was recorded. No significant
differences between men and women or between older and
younger individuals in terms of the blood oxygen concen-
tration and heart rate were observed. The reduced oxygen
saturation when wearing a mask has not yet been supported
by available data [40] even though some papers [41] admit
their influence without affecting heart rate.

The paper forms a contribution to hypothesis that wearing
face masks and respirators during physical experiments does
not statistically affect blood oxygen concentration and heart
rate. More extensive data sets, complex sensor systems, and
sophisticated mathematical methods should be included in
further research.
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