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ABSTRACT This article deals with the computation of robustly performing Proportional-Integral (PI)
controllers for interval plants, where the performance measures are represented by the worst-case Gain
Margin (GM) and Phase Margin (PM) specifications, in the event of multiple Phase Crossover Frequen-
cies (PCFs) and/or Gain Crossover Frequencies (GCFs). The multiplicity of PCFs and GCFs poses a
considerable complication in frequency-domain control design methods. The paper is a continuation of the
authors’ previous work that applied the robust PI controller design approach to a Continuous Stirred Tank
Reactor (CSTR). This preceding application represented the system with a single PCF and a single GCF, but
the current article focuses on a case of multiple PCFs and GCFs. The determination of a robust performance
region in the P-I plane is based on the stability/performance boundary locus method and the sixteen plant
theorem. In the illustrative example, a robust performance region is obtained for an experimental oblique
wing aircraft that is mathematically modeled as the unstable interval plant. The direct application of the
method results in the (pseudo-)GM and (pseudo-)PM regions that ‘‘illogically’’ protrude from the stability
region. Consequently, a deeper analysis of the selected points in the P-I plane shows that the calculated GM
and PM boundary loci are related to the numerically correct values, but that the results may be misleading,
especially for the loci outside the stability region, due to themultiplicity of the PCFs andGCFs. Nevertheless,
the example eventually shows that the important parts of the GM and PM regions, i.e., the parts that have
an impact on the final robust performance region, are valid. Thus, the method is applicable even to unstable
interval plants and to the control loops with multiple PCFs and GCFs.

INDEX TERMS Gain margin, interval plant, multiple crossover frequencies, oblique wing aircraft, phase
margin, PI controllers, robust control, robust performance.

I. INTRODUCTION
Controlled systems with interval uncertainty, or just the inter-
val plants, in short, represent a frequently used class of Linear
Time-Invariant (LTI) mathematical models of the real con-
trolled systems. The usage of these models may substitute the
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true complicated behavior of the systems, the inexact physical
properties knowledge, or just the change of the parameters
depending on various conditions. The well-knownmotivation
for covering all modeling intricacies with the interval plant is
that a group of linear robust analysis/synthesis methods may
be used consequently.

The Proportional-Integral-Derivative (PID) controllers
(and their special subtypes, such as PI controllers) remain
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without doubt alpha and omega of the control engineering
practice. In the previous decades, many surveys and reports
on a share of PID controllers at all practical control appli-
cations in various industry fields were presented [1]–[4].
The stated numbers usually vary between 90% and 98% of
PID-based control loops, depending on the specific realm.
It is not easy to find reliable and up-to-date statistical data,
but the automatic control community estimates that PID
controllers are used in more than 90% of industrial control
applications even today [5]. Therefore, it still makes sense to
investigate the tuning of PI(D) controllers, particularly under
uncertain operating conditions. Consequently, it is reason-
able that great attention has been paid to the research on
robustly stabilizing or robustly performing PI(D) controllers
for systems with parametric uncertainty [6], [7]. Frequently,
the controlled systems are considered only as the interval
plants, i.e., the LTI models with the independent structure
of uncertainty and with the uncertainty bounding set in the
shape of a (hyper-)box. These relatively simple models are
commonly used for the description of much more complex
real-world systems.

The problem of obtaining the nominal stability domains
for control systems with PI(D) compensators was addressed
by a number of researchers. Consequently, a series of meth-
ods was developed. For instance, the rigorous algorithm to
identify the stability domain in the space of controller param-
eters, called D-decomposition, was invented as far back as
1948 by Neimark [8]. This efficient technique has become
very popular, and thus the idea of D-decomposition was
further developed and expanded not only by its inventor
but also by many follow-up researchers – see, e.g. [9]–[15].
Among others, the parameter space approach, which is actu-
ally based on the concept of D-decomposition and which
utilizes frequency sweeping, was presented in almost a classic
book [12]. Apart from D-decomposition, other well-known
methods in the field exist. For example, computation of PID
stabilizers through the algorithms in which the frequency
sweeping is parried by decoupling at singular frequencies is
introduced in [16]. Another popular approach takes advantage
of the generalized Hermite-Biehler theorem [17], [7]. The
stability boundary locus method, which is a cornerstone of
the extensions in this paper, was proposed in [18], [19].
Furthermore, it is worth also reminding some other works
that present or compare various techniques for obtaining the
stabilizing PI or PID controllers for time-delay-free as well
as time-delay plants [20]–[30].

However, the practical control problems usually involve a
degree of uncertainty, often parametric uncertainty. Hence,
a natural step from the robust control viewpoint consists in
extending the investigation of nominally stabilizing PI(D)
controller parameters to the case of robustly stabilizing ones
[31], [32]. A classic method that is used for making the nom-
inally stabilizing methods applicable to robust stabilization
of the interval plants is the sixteen plant theorem [33], [34].
Nevertheless, this elegant extreme-point-based tool holds true
only if the first-order compensators (typically PI controllers)

are considered. For the case of PID controllers, more general
tools have to be employed, such as Kharitonov segments-
based results [35]–[37].

Although stability represents the major requisite for func-
tioning the control system, some performance is usually also
requested. The Gain Margin (GM) and Phase Margin (PM)
belong among the widely knownmeasures of the control loop
performance. The GM and PM can also be considered as
gauges for so-called relative stability. Nominal stabilization
of the plants for the specified GMs and PMs by means of the
stability boundary locus method was published in [19], [38].
Further, the design of PI controllers for simultaneous achieve-
ment of the specified GM, PM, and Gain Crossover Fre-
quency (GCF) by means of the curves in the GM-PM plane
was presented in [39]. For some alternative techniques for
mapping the performance requirements into the parameter
space, see, e.g., [40]–[43].

Ensuring the performance under conditions of uncertainty,
e.g., for all possible members of the interval plant family,
leads to the term ‘‘robust performance’’. Naturally, the GM
and PM can also be used in the robust performance frame-
work [37], [44]–[47]. It was already shown in the litera-
ture [48], [7], [34] that the mentioned sixteen plant theorem
is valid not only for the robust stability but is applicable
also for the robust performance specifications in terms of
GM and PM. For instance, the works [49], [50], [34] pre-
sented that the worst-case H∞ norm is related to one of
the sixteen Kharitonov plants. Furthermore, it was proved
that the outer boundary of the Nyquist envelope of a sta-
ble, strictly proper interval plant is covered by the Nyquist
plots of the sixteen Kharitonov plants [51], [52]. Although
the entire Nyquist envelope does not generally come from
the Kharitonov plants, the large and critical portions of the
Nyquist envelope are covered by these Nyquist plots [51].
Consequently, the worst-case GM and PM of the feedback
control system with the PI controller (generally a first-order
controller) and an interval plant are deducible from its sixteen
Kharitonov plants.

Usually, the uniqueness of Phase Crossover Frequen-
cies (PCFs) and GCFs is supposed in frequency-domain
control design methods, because their multiplicity poses a
serious complication. For example, the paper [53] calls the
multiplicity of crossover frequencies an Achilles heel of the
analytical data-driven tuning procedures for control systems.
However, this complicated situation may frequently appear in
practice, and so there is a need for appropriate solutions.

This paper aims at the calculation of robustly performing
PI controllers for interval plants with the worst-case GM and
PM specifications with the special emphasis on the case of
multiple PCFs and/or GCFs. This work further extends the
applicability of the interesting generalization of the stability
boundary locus method for specified GM and PM, which was
introduced in [19], [38] and applied to the fixed-parameter
controlled plants. In the authors’ previous work [54], the
set of robustly performing PI controllers was calculated for
a Continuous Stirred Tank Reactor (CSTR), assumed as

67714 VOLUME 10, 2022



R. Matušů et al.: Design of Robust PI Controllers for Interval Plants With Worst-Case Gain and PM Specifications

the stable interval plant, by combining the technique from
[19], [38] with the sixteen plant theorem. The current paper is
intended as a follow-up to the paper [54], and it focuses on the
case with multiple PCFs and GCFs. The technique is applied
to the mathematical model of an experimental oblique wing
aircraft [34], [55], [35], which is supposed to be in the form
of an interval plant. The members of the considered interval
plant family may be both stable and unstable systems. In the
illustrative example, the computation of a robust performance
region in the P-I plane for given GM and PM specifications
is discussed to a great extent.

The remainder of this paper is structured as follows. The
stability boundary locus method and its application to obtain
the robust stability or robust performance regions in the P-I
plane for the control loops with interval plants are summa-
rized in Section II. Then, the issues of the systems with mul-
tiple PCFs and GCFs are outlined in Section III. Further, the
specific example of the oblique wing aircraft model, which
leads to multiple PCFs and GCFs, is analyzed in the exten-
sive Section IV. The final Section V offers some concluding
remarks.

II. ROBUST STABILITY AND ROBUST PERFORMANCE OF
FEEDBACK LOOPS WITH PI CONTROLLER AND
INTERVAL PLANT
Consider the feedback control loop with an interval plant
G(s, a, b), the PI controller C(s), and virtual gain-phase mar-
gin tester Me−jθ , where M and θ are subject to GM and
PM specifications [37], [44], [47]. This closed-loop system is
depicted in Fig. 1. Note that forM = 1 and θ = 0, an ordinary
feedback connection is obtained.

FIGURE 1. Feedback control loop with an interval plant and gain-phase
margin tester.

The signals from Fig. 1 have the following meaning: w(t)
represents the reference signal, e(t) is the control (tracking)
error, u(t) stands for control (actuating) signal, and y(t) sym-
bolizes the controlled (output) signal. Further, C(s) denotes a
conventional PI controller given by:

C(s) = P+
I
s
=
Ps+ I
s

(1)

and G(s, a, b) represents a strictly proper interval plant:

G(s, b, a) =
B(s, b)
A(s, a)

=

m∑
i=0

[
b−i , b

+

i

]
si

sn +
n−1∑
i=0

[
a−i , a

+

i

]
si
, m < n (2)

with superscripts ‘‘−‘‘ and ‘‘+’’ symbolizing the lower and
upper bounds of the relevant parameters, respectively.

It is the well-known fact that a first-order controller (such
as PI controller (1)) robustly stabilizes the interval plant (2)
if and only if it stabilizes every single Kharitonov plant
[33], [34], and that there are sixteen of these Kharitonov
plants, given by the variations:

Gk,l(s) =
Bk (s)
Al(s)

, k, l ∈ {1, 2, 3, 4} (3)

where polynomials from B1(s) to B4(s) are the Kharitonov
polynomials [56] of the numerator B(s, b) of (2), i.e.:

B1(s) = b−0 + b
−

1 s+ b
+

2 s
2
+ b+3 s

3
+ · · ·

B2(s) = b+0 + b
+

1 s+ b
−

2 s
2
+ b−3 s

3
+ · · ·

B3(s) = b+0 + b
−

1 s+ b
−

2 s
2
+ b+3 s

3
+ · · ·

B4(s) = b−0 + b
+

1 s+ b
+

2 s
2
+ b−3 s

3
+ · · · (4)

and polynomials A1(s) to A4(s) are the analogous Kharitonov
polynomials of the denominator A(s, a) of (2).

Nevertheless, it was shown that this extreme-based six-
teen plant principle is applicable also for satisfying the per-
formance specifications, such as GMs and PMs [48], [7],
[34], [49]–[54]. Thus, the worst-case GMs and PMs for
the feedback control system (Fig. 1) with a first-order (PI)
controller (1) and a strictly proper interval plant (2) may be
calculated by means of GMs and PMs for the PI control loops
with the sixteen Kharitonov plants.

All in all, the problem of computation of robustly stabiliz-
ing or robustly performing PI controller for an interval plant
can be transformed in the set of sixteen simpler problems of
computation of stabilizing or performing PI controller for the
Kharitonov plants.

This partial task may be solved by using a relatively simple
but effective technique that is based on plotting the stability
boundary locus or performance boundary locus in the P-I
plane [18], [19].

Assume a plant given by a conventional fixed-parameter
transfer function, where s is substituted with jω, and where
the numerator and denominator polynomials are decomposed
into their even (subscripts ‘‘E’’) and odd (subscripts ‘‘O’’)
parts:

G(jω) =
BE (−ω2)+ jωBO(−ω2)
AE (−ω2)+ jωAO(−ω2)

(5)

In the works [18], [19], the parametric equations for cal-
culating the stability boundary locus in the P-I plane were
derived as:

P(ω) =
X5(ω)X4(ω)− X6(ω)X2(ω)
X1(ω)X4(ω)− X2(ω)X3(ω)

I (ω) =
X6(ω)X1(ω)− X5(ω)X3(ω)
X1(ω)X4(ω)− X2(ω)X3(ω)

(6)

where

X1(ω) = −ω2BO(−ω2)

X2(ω) = BE (−ω2)

X3(ω) = ωBE (−ω2)
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X4(ω) = ωBO(−ω2)

X5(ω) = ω2AO(−ω2)

X6(ω) = −ωAE (−ω2) (7)

The corresponding parametric curve, together with the
I = 0 line, divides the P-I plane into the stability and
instability areas. The related sub-problems of the decision
on stable/unstable areas via choosing the test points and a
convenient frequency ω gridding by means of the Nyquist
plot-based technique [20] are also discussed in [18], [19].

The same above-mentioned principle may be used for
obtaining the performance boundary locus for selected GMs
or/and PMs. In this case, the relations (7) are generalized to
[19]:

X1(ω) = M
(
ωBE (−ω2) sin θ − ω2BO(−ω2) cos θ

)
X2(ω) = M

(
BE (−ω2) cos θ + ωBO(−ω2) sin θ

)
X3(ω) = M

(
ωBE (−ω2) cos θ + ω2BO(−ω2) sin θ

)
X4(ω) = M

(
ωBO(−ω2) cos θ − BE (−ω2) sin θ

)
X5(ω) = ω2AO(−ω2)

X6(ω) = −ωAE (−ω2) (8)

The choice θ = 0 leads to the performance boundary locus
for a requested GM M . On the other hand, the performance
boundary locus for a selected PM θ can be obtained under
the assumption that M = 1 (not 0, as was mistakenly stated
in [54]). Once both GM and PM performance regions are
determined on the basis of the obtained boundary loci, their
intersection defines the performance region that guarantees
the requested GM and PM together.
Consequently, as stated hereinbefore, the final robust per-

formance region for an interval plant can be obtained as the
intersection of sixteen ‘‘partial’’ performance regions for the
sixteen Kharitonov plants.
The application of the principle has already been demon-

strated on robust PI controller design for a CSTR in the
authors’ previous work [54]. However, this paper focuses on
a special case of multiple PCFs and GCFs.

III. MULTIPLE PHASE AND GAIN CROSSOVER
FREQUENCIES
The elementary principle of GM and PM is very well known
from the classical control theory. The GM and PM values
can be considered as the safety margins before a closed-loop
system becomes unstable (or marginally stable, to be more
precise). The determination of the GM and PM values, valid
for a closed-loop system, is based on a relevant open-loop
system. In some specific cases, the GM and PM may not be
enough to indicate the true robustness of a system when the
gain and phase are varying simultaneously [57]. Nevertheless,
in the majority of common control systems, the GM and PM
are good indicators of the system’s robustness. The exact

definitions and the basic graphical representations of GM and
PM via Nyquist or Bode plots can be found in many (robust)
control books.
However, as noted in [58], an array of literature sources

stay only halfway in explaining GM and PM. They usually
limit their attention to the case of a stable open-loop sys-
tem with the Nyquist curve crossing the negative real axis
on the right-hand side of the critical point [−1, 0j], and
crossing the unit circle below the real axis (usually in the
third quadrant). Remind that also the open-loop systems with
zero poles (integrators) are considered as stable ones from
the viewpoint of the Nyquist stability criterion. Alternatively,
the elucidation may be supported by the corresponding Bode
diagrams. Anyway, such a scenario then corresponds to a
stable closed-loop system with the GM M > 1(= 0 dB) and
the PM θ > 0◦. Nonetheless, the situation may be much more
complicated.
The special cases include infinite GM and/or infinite PM.

It means that regardless of the size of GM and/or PM, the
closed-loop control system remains always stable.
A typical counterexample to the classic academic example

from the majority of (robust) control books appears when
the open-loop Nyquist plot crosses the negative real axis on
the left-hand side of the point [−1, 0j], and crosses the unit
circle above the real axis. This emerges, e.g., in the case of
an unstable open loop (with a single unstable pole) and a
stable closed loop. Then, the GM M < 1(= 0 dB) and the
PM θ < 0◦ are observed. Consequently, the closed-loop
system stability will be endangered by decreasing the gain
or increasing the phase.
However, the situation can be even more complex. For

example, the Nyquist curve may cross the negative real axis
on both the right-hand side and the left-hand side of the
point [−1, 0j], and/or it may cross the unit circle both below
and above the real axis. In such an event, GM and/or PM
are given by the intervals, i.e., by the minimum and max-
imum GM/PM. The graphical representation of these both-
side crossovers can be found, e.g., in Figure 9.13 in the book
[57], which is one of not many sources that also examines this
eventuality.
The most general case then supposes more crossings on

both mentioned sides for GM and/or PM. In such a sit-
uation, the nearest crossing to the critical point [−1, 0j]
and/or the nearest crossing to the real axis are taken as
the significant ones. The multiplicity of PCFs and GCFs
means a considerable complication in frequency-domain
control design methods. As stated in Introduction, the
work [53] calls it anAchilles heel of the analytical data-driven
tuning procedures for control systems. Thus, these com-
plex cases with multiple PCFs and GCFs need increased
attention.
The following example analyzes the application of the

method for calculation of robustly performing PI con-
trollers to the interval plant under prescribed worst-case GM
and PM specifications in the event of multiple PCFs and
GCFs.
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IV. ILLUSTRATIVE EXAMPLE – OBLIQUE WING
AIRCRAFT MODEL
A. MATHEMATICAL MODEL AND
PROBLEM FORMULATION
Assume the mathematical model of an experimental oblique
wing aircraft, which is given by the interval plant, adopted
from [34] with the original cited reference to [55]:

G(s, b, a) =
b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0
(9)

where the parameters may lie within the following intervals:

b1 ∈ [54, 74]

b0 ∈ [90, 166]

a3 ∈ [2.8, 4.6]

a2 ∈ [50.4, 80.8]

a1 ∈ [30.1, 33.9]

a0 ∈ [−0.1, 0.1] (10)

Note that the interval plant family (9) contains stable as
well as unstable members.

The objective is to find the region of parameters of the PI
controller (1) that lead to the feedback control loop (Fig. 1)
with a minimum GM M = 2(≈ 6 dB) together with a
minimum PM θ = 30◦ for all possible interval plant param-
eters (10).

B. PRELIMINARY ANALYSIS
As it was shown in [54] and described in the previous
Section 2, the robust performance region can be obtained
as the intersection of sixteen GM regions and sixteen PM
regions that are plotted for sixteen Kharitonov plants (3). It is
still valid, but the situation can be a bit trickier for the cases
of multiple PCFs and/or GCFs.

Focus, e.g., on the Kharitonov plant G1,2(s):

G1,2(s) =
B1(s)
A2(s)

=
b−1 s+ b

−

0

s4 + a−3 s
3 + a−2 s

2 + a+1 s+ a
+

0

=
54s+ 90

s4 + 2.8s3 + 50.4s2 + 33.9s+ 0.1
(11)

For this plant, the transfer function (5) has the specific even
and odd parts of the numerator and denominator polynomials
as follows:

BE (−ω2) = 90

BO(−ω2) = 54

AE (−ω2) = ω4
+ 50.4(−ω2)+ 0.1

AO(−ω2) = 2.8(−ω2)+ 33.9 (12)

The stability boundary locus can be obtained by simul-
taneous solution of (6) and (7) for a range of nonnegative
frequencies ω, combined with the I = 0 line. Then, the
performance boundary locus (i.e., the GM boundary locus
or the PM boundary locus) can be determined by using (6)
and (8), together with the I = 0 line.

The stability boundary locus is depicted by the black curve
in Fig. 2. It can be easily verified that the interior of the
obtained black shape defines the stability region. Then, in the
same figure, the red curve corresponds to the (pseudo-)GM
boundary locus for M = 2(≈ 6 dB), and the blue curve
presents the (pseudo-)PM boundary locus for θ = 30◦.
Again, the insides of these shapes, calculated according to (6)
and (8), give the corresponding performance regions.

FIGURE 2. Stability region boundary, (pseudo-)GM region boundary
(M = 2 (≈ 6 dB)), and (pseudo-)PM region boundary (θ > 30◦) obtained
using (6)-(8) for the Kharitonov plant (11).

However, a specific phenomenon can be observed in Fig. 2.
The (pseudo-)GM region and the (pseudo-)PM region pro-
trude from the stability region, which makes no sense at
first sight. Thus, the true GM and PM will be analyzed in
11 chosen interesting points (p1 – p11) that were selected as
shown in Fig. 3.

FIGURE 3. Position of 11 analyzed points in the PI plane.

C. DETAILED ANALYSIS IN 11 SELECTED POINTS
The GM and PM will be successively analyzed for the con-
trol loop with the Kharitonov plant (11) and 11 pairs of PI
controller parameters that correspond to 11 points in the P-I
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FIGURE 4. The Nyquist diagram for the point p1 (the full view).

plane (Fig. 3). The GM/PM data will be based on the results
obtained by using the standard Matlab ‘‘allmargin’’ function.

1) POINT 1
The first selected point p1 corresponds to the parameters P =
0.4093, I = 2.5. As can be seen, it lies on the obtained GM
boundary locus forM = 2(≈ 6 dB), but at the same time, it is
located outside the stability region. So what is wrong? The
answer resides in the multiplicity of the PCFs, because the
control loop has three pseudo-GM values 6.1492 × 10−4, 2,
3.5206 [−], which occur at the PCFs 0.0639, 2.8519, 5.5385
[rad/s], respectively. Besides, there is the pseudo-PM -8.2530
[◦] at the GCF 1.9688 [rad/s]. The whole situation can be
clarified by means of the Nyquist and Bode diagrams of the
open-loop system. Fig. 4 shows the (the full view) Nyquist
diagram (for the positive frequencies), and Fig. 5 adds a closer
look near the critical point [−1, 0j]. The horizontal axis,
labeled as ‘‘Real Axis’’, represents the real parts of the open-
loop sinusoidal transfer function L(jω) = C(jω)G1,2(jω), and
the vertical axis, labeled as ‘‘Imaginary Axis’’ represents the
imaginary parts of the open-loop sinusoidal transfer function
L(jω). The same notation is also used in all the following
relevant figures. Then, Fig. 6 presents the Bode diagram.

FIGURE 5. The Nyquist diagram for the point p1 (a detailed view).

FIGURE 6. The Bode diagram for the point p1.

Thus, Figs. 4-6 demonstrate that the middle value 2 of
three pseudo-GMs may be calculated, but it has no practical
meaning in this case since the closed-loop control system is
unstable in fact.

2) POINT 2
The second chosen point p2 (P = 0.6427, I = 4.7968) leads
to three pseudo-GMs 3.0777× 10−4, 1.5469, 1.9997, occur-
ring at the PCFs 0.0626, 3.6287, 4.9067, respectively. More-
over, there is the pseudo-PM−4.9267 at the GCF 2.7358. The
shapes of the Nyquist and Bode diagrams are very similar to
the previous case (point 1), so only a zoomed-view Nyquist
plot and Bode plot are shown in Figs. 7 and 8, respectively.

FIGURE 7. The Nyquist diagram for the point p2 (a detailed view).

Again, it can be seen that the pseudo-GM with the value 2
has no meaning at all here. There is even one smaller pseudo-
GM from the right-hand side (Fig. 7), but even this one is
practically useless due to the instability of the closed-loop
control system.

3) POINT 3
The crossing of the GM boundary locus and the sta-
bility boundary locus was chosen as the third point p3
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FIGURE 8. The Bode diagram for the point p2.

FIGURE 9. The Nyquist diagram for the point p3 (a detailed view).

FIGURE 10. The Bode diagram for the point p3.

(P = 0.7474, I = 4.0676). For p3, there are three GM
candidates 3.8876 × 10−4, 1.0001, 2.0001 at PCFs 0.0648,
2.5584, 5.7456, respectively, and the PM 5.4083 × 10−4 at
GCF 2.5584. The basic shape of the Nyquist curve is similar
to the previous cases, and thus only its zoomed version is
provided (Fig. 9). Further, the Bode diagram is depicted in
Fig. 10.

FIGURE 11. The Nyquist diagram for the point p4 (a detailed view).

FIGURE 12. The Bode diagram for the point p4.

In this scenario, the closed-loop control system is
marginally stable, i.e., it is on the stability border (the trueGM
is 1.0001 and the true PM is 5.4083× 10−4), which concurs
with the position of p3 in the P-I plane (Fig. 3).

4) POINT 4
The fourth selected point p4 with coordinates P =

0.8252, I = 2.5 results in three GM candidates 7.9997 ×
10−4, 0.5462, 2.0001 at PCFs 0.0728, 1.5436, 6.3174, respec-
tively, and the PM 9.0438 at GCF 2.1114. A zoomed Nyquist
diagram and the Bode diagram are shown in Fig. 11 and
Fig. 12, respectively.

As can be seen, the closed-loop control system is stable.
Moreover, it can be observed that this is the first time when
the value of GM 2 is of practical importance. It serves as the
right-hand side stability margin (Fig. 11). Despite the fact
that the instability may also be reached from the left-hand
side (see Fig. 9), because the true GM is given by the inter-
val [0.5462, 2.0001], the number 2 represents the relevant
GM-related value now.

5) POINT 5
The crossing of the GM boundary locus and the PM boundary
locus was set as the fifth point p5 (P = 0.8775, I = 0.922).
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This interesting point corresponds to the GM 2 at the PCF
6.6794 and the PM 30.0038 at the GCF 1.6109. The Nyquist
diagram is plotted in Fig. 13. Note that it is not a zoomed
version but a full one because there are no more imaginary
axis crossings on the left-hand side. Then, the Bode diagram
is shown in Fig. 14.

FIGURE 13. The Nyquist diagram for the point p5.

FIGURE 14. The Bode diagram for the point p5.

Thus, at the point p5, the closed-loop control system is sta-
ble, and both GM and PM values are exactly at the minimum
requested levels.

6) POINT 6
The sixth chosen point p6 is located at the GMboundary locus
and inside the PM region simultaneously (P = 0.8895, I =
0.5). The corresponding control loop has the GM 2 at the PCF
6.7611 and the PM 42.2626 at the GCF 1.492. The Nyquist
and Bode plots (very similar to the previous point p5) are
depicted in Figs. 15 and 16, respectively.

As can be seen, for the point p6, the closed-loop control
system is stable, the minimum acceptable value of GM and
the higher than requested value of PM were obtained.

7) POINT 7
The coordinates of the seventh point p7 were selected as P =
0.6272, I = 0.5, which means p7 lies on the PM boundary

FIGURE 15. The Nyquist diagram for the point p6.

FIGURE 16. The Bode diagram for the point p6.

FIGURE 17. The Nyquist diagram for the point p7.

locus and inside the GM region. This case leads to the GM
2.8182 at the PCF 6.7224 and the PM 29.9978 at the GCF
1.2411. The Nyquist and Bode diagrams (again, very similar
to the previous two points) are plotted in Figs. 17 and 18,
respectively.
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FIGURE 18. The Bode diagram for the point p7.

As expected, the closed-loop control system is stable, and
it has the minimum requested value of PM and the higher than
requested value of GM.

8) POINT 8
The eighth point p8 (P = 1.4251, I = 2.5) results in
three GM candidates 0.0014, 0.1358, 1.2065 at the PCFs
0.0970, 0.8497, 6.5583, respectively, and the PM 30.0019 at
the GCF 2.5251. A zoomed Nyquist diagram (with one more
imaginary axis crossing on the left-hand side in the full view)
and the Bode diagram are presented in Figs. 19 and 20,
respectively.

FIGURE 19. The Nyquist diagram for the point p8 (a detailed view).

For the point p8, the closed-loop control system is stable.
The GM is given by the interval [0.1358, 1.2065], and the
minimum requested value of PM is obtained, which is in
compliance with the position of p8 in the P-I plane.

9) POINT 9
The crossing of the PM boundary locus and the stability
boundary locus is a position of the ninth chosen point p9
(P = 1.6977, I = 3.6822). In this case, there are three
candidates for the GM 7.1261 × 10−4, 0.1726, 1 at the

FIGURE 20. The Bode diagram for the point p8.

FIGURE 21. The Nyquist diagram for the point p9 (a detailed view).

FIGURE 22. The Bode diagram for the point p9.

PCFs 0.0834, 1.1119, 6.4832, respectively, and three PM
candidates 30.0030,−0.1633,−11.9730 at the GCFs 3.1100,
6.4870, 6.7399. The zoomed version of the Nyquist curve
(with one more imaginary axis crossing on the left-hand side
in the full scale) is provided in Fig. 21, and the Bode plots are
shown in Fig. 22.
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For the point p9, the closed-loop control system is
marginally stable (on the stability border), which concurs
with the position of p9 in the P-I plane (Fig. 3). Thus, the true
GM is 1 and the true PM is near 0 (the value −0.1633 was
computed). As can be seen, the pseudo-PMwith the requested
value 30 was theoretically calculated as one of the obtained
values, but it has no practical meaning in this case.

10) POINT 10
The tenth selected point p10 (P = 2.0652, I = 5.3968)
corresponds to a trio of the pseudo-GMvalues 4.0964×10−4,
0.1840, 0.8105, which occur at the PCFs 0.0766, 1.3454,
6.3989, respectively, and a trio of the pseudo-PM values
29.9992, 28.7164, −45.7744 at the GCFs 4.4945, 4.8948,
7.3648, respectively. A detailed view of the Nyquist diagram
(with one more imaginary axis crossing on the left-hand side
in the full view) is given in Fig. 23, and the Bode diagram is
depicted in Fig. 24.

FIGURE 23. The Nyquist diagram for the point p10 (a detailed view).

FIGURE 24. The Bode diagram for the point p10.

Obviously, although one of the calculated pseudo-PM val-
ues has the requested level, it has no practical meaning here.
The closed-loop control system is unstable.

FIGURE 25. The Nyquist diagram for the point p11 (the full view).

FIGURE 26. The Nyquist diagram for the point p11 (a detailed view).

11) POINT 11
The last chosen point p11 (P = 1.9907, I = 2.5) leads to three
pseudo-GMs 0.0073, 0.0157, 0.8765, occurring at the PCFs
0.2175, 0.3163, 6.6455, respectively, and three pseudo-PMs
43.6417, 30.0058, −28.5065 at the GCFs 3.2510, 5.7969,
7.2051. Fig. 25 shows the Nyquist diagram in the full view,
and Fig. 26 brings a nearer look to the neighborhood of
the critical point [−1, 0j]. Finally, Fig. 27 depicts the Bode
plots.

Similarly to the previous point p10, a calculated value of
the pseudo-PM 30 is meaningless also here, for the point p11.
In fact, the closed-loop control system is unstable.

D. ANALYSIS SUMMARY
The numerical results from the preceding analysis are briefly
summarized in Table 1. It contains all data obtained by means
of Matlab ‘‘allmargin’’ function, i.e., including pseudo-GMs
and pseudo-PMs. The true GMs and PMs are highlighted by
the blue color. Moreover, the values of the requested worst-
case GM 2 and PM 30 are highlighted by the bold font.
The numerical results from the preceding analysis are

briefly summarized in Table 1.
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FIGURE 27. The Bode diagram for the point p11.

TABLE 1. Gain margin and phase margin values for 11 selected points in
the P-I plane (Fig. 3).

Apparently, the algorithm (6), (8) produces the perfor-
mance boundary loci that are related to the ‘‘numerically
correct’’ requested values of GM and/or PM, even for the
case ofmultiple crossover frequencies. However, the obtained
results may be misleading, especially for the loci outside the
stability region, where the calculated values are meaningless.
Nevertheless, even inside the stability region, the determina-
tion of the GM or PM may be complicated in the case of
multiple crossover frequencies since there may be margins
for both increasing and decreasing gain/phase. Fortunately,
it seems the computed values inside the stability region, and
especially inside the performance region, make sense and
have significance for robust controller design. All in all, the
intersection of the GM region and the PM region (Fig. 2)
defines the relevant performance region, in which both mini-
mum required GM and minimum required PM are fulfilled.

The analysis was accomplished for the Kharitonov plant
G1,2(s) (11), but similar findings would also be obtained for
other Kharitonov plants, even for the unstable ones.

E. ROBUST PERFORMANCE REGION
The final robust performance region can be obtained as the
intersection of sixteen partial performance regions for each

FIGURE 28. GM regions (red), PM regions (blue), and stability
regions (black) for all sixteen Kharitonov plants (3) of (9).

of the sixteen Kharitonov plants (3). Thus, it may be practi-
cally achieved as the intersection of sixteen GM regions and
sixteen PM regions [54].

Fig. 28 shows the set of sixteen GM regions (plotted by
using the red curves), PM regions (plotted by means of the
blue curves), and also the stability regions (depicted by the
black curves), just for completeness.

The intersection of all GM and PM regions from
Fig. 28 defines the final robust performance controller design
region. This robust performance region is moved closer and
indicated by the yellow area in Fig. 29.

FIGURE 29. Robust performance region for the interval plant (9).

As summary, the PI controllers (1) with parameters inside
the robust performance region in the P-I plane (Fig. 29)
guarantee the stable feedback control loop with the GM
greater than 2 (≈6 dB) and the PM greater than 30◦ for
all possible parameters (10) of the interval plant (9), which
represents a mathematical model of an experimental oblique
wing aircraft. Obviously, if a pair of P-I parameters is located
on the border of the robust performance region, one or both
of the performance measures will be exactly at the minimum
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requested worst-case levels. A reasonable choice of the con-
troller corresponds to the exact GM 2 (≈6 dB) and the exact
PM 30◦ for a worst-case member of the interval plant family
(and the higher values of GM and PM for the remaining
members). This controller is given by the upper right vertex
of the robust performance region from Fig. 29 (marked by the
green point), i.e., its parameters are P = 0.6359, I = 0.0678.

This example reveals a practical benefit that this graphical
design methodology can easily cope with a difficult robust
controller design problem that requires the preservation of
the control performance within the predefined parametric
uncertainty ranges of the controlled system.

V. CONCLUSION
The article was focused on the calculation of robustly
performing PI controllers for interval plants under given
worst-case GM and PM design specifications with stress on
the case of multiple PCFs and/or GCFs. It was intended
as a follow-up to the authors’ previous work [54], which
extended the stability boundary locus method for specified
GM and PM and for fixed-parameter plants presented in [19],
[38] by combining it with the sixteen plant theorem. In the
paper [54], the approach was applied to a CSTR, modeled
as the stable interval plant, which led to the case of a con-
trol loop with a unique PCF and GCF. The current paper
concentrated on the control systems with multiple crossover
frequencies.

The method was utilized for obtaining the robust perfor-
mance region in the P-I plane for an experimental oblique
wing aircraft, mathematically modeled as the unstable inter-
val plant. The straightforward application of the technique led
to the (pseudo-)GM and (pseudo-)PM regions that protruded
from the stability region, which had no sense. Consequently,
a deeper analysis of the selected points in the P-I plane
showed the fact that the calculated GM and PM boundary loci
were related to the numerically correct values; however, the
analysis also demonstrated that the results might be mislead-
ing, especially for the loci outside the stability region, due to
the multiplicity of the PCFs and/or GCFs. Nonetheless, the
example showed that the important parts of the GM and PM
regions that had an impact on the final robust performance
region were valid, and thus the method might be applicable
even to unstable interval plants and to the control loops with
multiple crossover frequencies.
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