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Abstract—This paper represents the next step in the de-
velopment of the recently proposed single objective meta-
heuristic algorithm - Self-Organizing Migrating Algorithm with
CLustering-aided migration and adaptive Perturbation vector
control (SOMA-CLP). The CEC 2021 single objective bound-
constrained optimization benchmark testbed was used for the
performance evaluation of the modifications of the algorithm.
The presented modifications were invoked by the results of CEC
2021 competition, where the SOMA-CLP ranked 7th out of 9
competing algorithms. This paper introduces three modifications
of population organization process focusing on one particular
phase of the SOMA-CLP algorithm aimed at exploitation. All re-
sults were compared and tested for statistical significance against
the original variant using the Friedman rank test. The algorithm
modification and analysis of the results presented here can be
inspiring for other researchers working on the development and
modifications of evolutionary computing techniques.

Index Terms—SOMA, SOMA-CLP, k-means, clustering,
benchmarking, CEC 2021, population dynamics

I. INTRODUCTION

In recent decades, evolutionary algorithms (EA) gained
popularity and reputation as robust and effective tools for
solving various optimization tasks. This reputation is prob-
ably the main drive behind the number of newly developed
metaheuristic algorithms. New algorithms or modifications
of already established ones are presented to the community
every year in enormous quantities, and it is nearly impossible
to maintain informed overview. A powerful tool that helps
to discover and compare interesting metaheuristic algorithms
is benchmarking. For example, benchmark set for single-
objective optimization in the form of a special session in
IEEE Congress on Evolutionary Computation (CEC). Since
2005 [1], the series of CEC benchmarks represent a substantial
pool of the most suitable test function candidates and rank
the algorithms based on their overall performance. Therefore,
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anybody can use the CEC benchmark to select the state-of-
the-art algorithm or compare new modifications or candidates
against already established algorithms.

The paper is focused on a newly developed algorithm
that has been tested on the CEC 2021 benchmarking testbed
[2]. The algorithm represents a modern variant of the
Self-Organizing Migrating Algorithm (SOMA) named Self-
Organizing Migrating Algorithm with CLustering-aided mi-
gration and adaptive Perturbation vector control (SOMA-
CLP).

Recently, SOMA-based algorithms have begun to appear
at CEC competitions. As for the CEC 2019 competition [3],
three SOMA representatives were attending which one of them
achieved third place, therefore showing promising potential for
this algorithms family.

The SOMA-CLP algorithm is a direct descendant of
SOMA-CL [4]. SOMA-CLP [5] uses a linear adaptation of the
prt control parameter, promoting the global transition from the
tendency of exploration to exploitation. The workflow of the
SOMA-CLP can be divided into three phases: search space
mapping, clustering of the mapped space, and the exploitation
by performing a more detailed screening of areas of interest
discovered during the first phase. All three phases thus define
one iteration of the algorithm.

The 2021 CEC benchmarking testbed encompasses several
categories: non-shifted, shifted, non-rotated shifted, and ro-
tated shifted cases. Based on the official ranking, the SOMA-
CLP was placed 7th out of 9 contestants, which suggests a lot
of room for improvement. Therefore, this paper is investigating
several possible techniques for the improvement of the overall
performance of the SOMA-CLP.

The paper is structured as follows. The next section covers
SOMA and SOMA-CLP; section III describes new modifi-
cations proposed for SOMA-CLP; section IV provides the
experiment setup with benchmark results, and the last section
contains concluding remarks.



II. ALGORITHM DESCRIPTIONS

The following subsections cover the description of the
SOMA and SOMA-CLP. Firstly, the basic, original SOMA
is described together with its commonly used strategies. Sec-
ondly follows the description of its modern variant SOMA-
CLP, introduced on the latest CEC 2021 benchmark.

A. SOMA

The Self-Organizing Migrating Algorithm (SOMA) was
initially developed in 1999 by I. Zelinka [6], [7]. SOMA takes
inspiration in self-organization and cooperative behavior while
maintaining some of the fundamentals of nature-inspired meth-
ods. The discrete perturbation mimics the mutation process
while the self-adaptation of movement over the search space
allows easy scalability.

As mentioned, SOMA is based on the cooperation of
individuals. Hence, the candidate solution is represented by
an individual x. The cooperation amongst individual is, by
author, defined as a migration (1) of one particular individual
from population towards another member of the population.

xk+1
i,j = xki,j +

(
xkL,j − xki,j

)
· t · PRTV ectorj (1)

The xk+1
i,j is a new position of an i-th individual in j-dimension

for a next iteration step k+1. Accordingly, the xki,j is a position
of the same individual in k iteration. The xkL,j the position of a
leader, which is selected based on the selected SOMA strategy
(SOMA strategies are described below). Individual discrete
steps between an i-th individual and selected leader xkL,j are
represented by t parameter. The best-found solution on this
path is then transferred into a new iteration. The t parameter
is a collection of values starting from 0 to PathLength with
increment (or step size) of Step.

The PRTV ectorj mimics the mutation process and is
generated as (2) for all the individual t steps. This vector deter-
mines in which dimensions j the i-th individual will migrate
towards a leader and which dimensions stay unchanged. From
the equation (2) it is clear that the parameter prt has a direct
impact on the resulting PRTV ectorj and on the strength of
a mutation during the migration. This prt parameter can be
considered as a threshold value and is chosen in the range
from 0 to 1.

PRTV ectorj =

{
1 , if(randj < prt)
0 , otherwise

(2)

Original SOMA describes several different strategies for the
leader selection. Three most common strategies are described
bellow.

1) Strategy All-To-One: This easy to implement strategy
will select for each migration cycle (one iteration of the
algorithm) one leader. The leader is selected based on its
objective function value. All the remaining individuals then
migrate towards the leader.

2) Strategy All-To-Random: This strategy contains leader
individual as in All-To-One strategy. However, the leader is
selected randomly for each migrant at the beginning of the
migration process.

3) Strategy All-To-All: The selection process of a leader is
different for this strategy. One individual migrates towards all
other individuals. After the end of the migration of a selected
individual, this individual returns to its original position, and
the process is repeated for the next individual. The migration
cycle ends after all the individuals in population migrated
towards each other, and all individuals then update their
positions.

B. SOMA-CLP

The metaheuristic algorithm, Self-Organizing Migrating Al-
gorithm with CLustering-aided migration and adaptive Pertur-
bation vector control (SOMA-CLP) is a recent modification
of SOMA which is the updated version of its predecessor
SOMA-CL. SOMA-CLP uses a linear adaptation of the prt
control parameter to generate a perturbation vector, promoting
the global transition from the tendency of exploration to
exploitation as the strength of perturbation of individuals’
movement weakens. The workflow of the SOMA-CLP can
be divided into three phases. The first exploration phase is
focused on space mapping, the second phase is a clustering of
the mapped space by k-means method [8], and the third phase
is focused on exploitation by carrying out a more detailed
screening of areas of interest discovered by the first phase. The
end of the last phase also ends one iteration of the algorithm,
and the whole process starts again with phase one. Detailed
descriptions of the phases are in the following subsections in
order of occurrence.

1) Exploration Phase: This phase uses the SOMA with
All-To-Random strategy as described in subsection II-A2. The
leader is selected randomly from the population set of NP
individuals for each active individual x. The migration strategy
equation is the same as for the SOMA in (1). The main
difference between SOMA-CL and the proposed SOMA-CLP
is the usage of the linear adaptation of the prt parameter.
Originally, the prt is one of the user-defined parameters of
SOMA. The proposed SOMA variant employs the similar
adaptivity of the prt parameter as in other modern variants
of SOMA [9], [10]. This adaptation affects the covered area
by the exploration phase over the algorithm execution. The prt
represents the strength of a perturbation during the migration
and starts with the low value (exploration), and it is steadily
increasing to an upper limit (exploitation). Therefore, at the
beginning of the algorithm, the exploration phase covers wider
hyperspace of solutions between active individual and leader,
and this mapping later becomes more focused on the ”direct”
path between them. The equation of the adaptive prt is defined
as (3).

prt = 0.08 + 0.9 · (FES/maxFES) (3)

Where the FES is the number of objective function evalua-
tions in a given time, and the maxFES is the maximal limit
of such evaluations.

An essential part of this phase is that each evaluated indi-
vidual is stored in a memory M. This memory M represents all
visited solutions and is used in the next phase of the algorithm.



2) Clustering of the Mapped Space: The evaluated solu-
tions stored in the memory M from the previous exploration
phase are investigated in this second phase. From the memory
M are selected candidate leaders for the last exploitation phase.
The basic idea is to select only a few promising solutions from
the whole covered hyperspace. Therefore, a clustering method
to divide all solutions by their parameter values into several
groups (clusters) is used. Namely, the k-means clustering
method [11]. The number of outcome clusters should be 10%
of the NP, or it may be set by the user as NPL. The k-means
algorithm is an iterative algorithm that can be briefly described
in three steps. In the first step, k-number of centroids are
randomly selected from the pool of visited positions. For the
second step, the objects (in this case, positions) are assigned to
the nearest centroids (one object can have assigned only one
centroid). The third step recalculates the positions of centroids
to ensure that the new positions become the new mean. The
second and third parts are then repeated until convergence is
reached.

From each of the created clusters are selected only solutions
with the best objective function value within their cluster –
cluster leaders. The cluster leaders are then sorted by their
objective function values in ascending order from the best-
found solution to the worst.

3) Exploitation Phase: This phase uses the SOMA with
the All-To-One strategy with two alterations. The leader xL,j

in equation (1) is this time selected from the set of cluster
leaders using the Rank Selection technique [12]. The leader is
selected for each individual. The individual xi is migrating by
discrete steps, and the best-found solution on t-th position is
propagated into a new iteration of the algorithm. The t param-
eter is generated in a range starting from 0 to pathLengthL

with step size stepL. The leader selection with parameters
values of pathLengthL and stepL should ensure the exploitation
of an interesting solutions discovered in the first phase. The
PRTV ectorj is generated in the same way as in equation (2),
and the prt is again computed by (3).

The described three phases of the SOMA-CLP are then
repeated until the stopping condition is met, typically the
maxFES is reached.

III. PROPOSED MODIFICATIONS

The following subsections cover the proposed modifications
to the original SOMA-CLP. To improve the average algorithm
performance on the CEC benchmark, all three modifications
were suggested and discussed at the latest Genetic and Evo-
lutionary Computation Conference, GECCO 2021 [5], where
SOMA-CLP was firstly introduced as a CEC 2021 benchmark
competition entry. The proposed modifications deal with the
mechanisms of the cluster leader selection process for the third
phase of the SOMA-CLP. For clarity and future reference,
each modification is numbered in order of occurrence. Thus,
modification 1 – Narrow Cluster Leader Selection Process,
modification 2 – Roulette Selection, and modification 3 –
Single Cluster Leader.

Algorithm 1 SOMA-CLP

1: Set D, NP, NPL, and MAXFES
2: Set step, and pathLength
3: Set stepL, and pathLengthL

4: while Stopping criterion not met do
5: M = ∅
6: for i = 1 to NP do
7: xL = pick random solution x
8: prt = 0.08 + 0.9 · (FES/maxFES)
9: for t = 0 to pathLength with t+ = step do

10: generate PRTVector by eq. (2)
11: migrate xi to xL by eq. (1)
12: save each evaluated solution into M
13: end for
14: end for
15: k-means clustering method for solutions stored in M
16: keep only best-solution from each cluster
17: sort the remaining solutions in M
18: for i = 1 to NPL do
19: xL = Rank Selection from cluster leaders
20: prt = 0.08 + 0.9 · (FES/maxFES)
21: for t = 0 to pathLengthL with t+ = stepL do
22: generate PRTVector by eq. (2)
23: migrate xi to xL by eq. (1)
24: end for
25: end for
26: record the best solution
27: end while

A. Narrow Cluster Leader Selection Process

SOMA-CLP defines the number of cluster as a 1/10 of
the NP, resulting in also the very same amount of so-called
cluster leaders. Simple idea was to limit the number of leaders
for the third phase of the SOMA-CLP by eliminating some
candidates. The elimination process is based on the objective
function value of the cluster leaders and only 50% of them
can be chosen as leaders in the third phase. We expect that the
modification should increase the exploitation of the promising
areas at the cost of a faster population diversity decrease.

B. Roulette Selection

Modification number two offers a different selection method
for leaders in the third phase of the algorithm. It utilizes a
roulette selection method [12] instead of the originally used
rank selection. The expected behaviour of roulette selection
is as follows. The solution with the best objective function
value has the highest probability to be chosen as a leader,
the second-best has the second-highest probability of being
selected, and so on. The worst solution has the lowest chance
of being chosen as a leader.

C. Single Cluster Leader

The last modification, number three, changes how often the
leader is selected in the third phase of the SOMA-CLP. In the
original algorithm, each individual selects a new leader from



the pool of cluster leaders. This modification follows strict
rule that the leader is chosen only once in each migration
using roulette selection; therefore, all the individuals migrate
towards one leader – similar to the All-To-One strategy of the
original SOMA.

IV. EXPERIMENT SETUP

The CEC 2021 Special Session and Competition on Single
Objective Bound Constrained Optimization [2] is accompanied
by a technical report which describes the benchmark itself
together with instructions on how to approach the test prob-
lems. It also provides test function definitions and describes
the evaluation criteria. The benchmark suite consists of 10
test functions (one unimodal function, three basic multimodal
functions, three hybrid functions, and three composition func-
tions). Each test function can be further parametrized. The set-
ting of parametrization vector may enable bias, shift, rotation,
or any combination to each test function. The parametrization
vector introduces 8 possible configurations to a test function.
Therefore, the total number of test functions for one dimension
is 80. Each test function has a defined search range in span
from -100 to 100 and a different minimum value. The tested
dimension sizes are 10 and 20 for all test functions. Each
test function, for a particular scenario, should be optimized
in 30 independent runs, which then represent the final results.
Finally, both of the tested dimension sizes has a fixed budget
of maximal function evaluations - maxFES.

The values of the control parameters for the SOMA-CLP
variants are given in Table. I. All three proposed modifications
share the same parameter values for a fair comparison and also
they are the same as for the original SOMA-CLP version.

The source code of the SOMA-CLP is available at the
A.I.Lab Github1.

TABLE I: SOMA-CLP parameters

Parameter Value
NP 100

NPL 10
step 0.33

stepL 0.11
pathLength 3.0

pathLengthL 3.0

V. RESULTS

This section contains the results and performance analyses
of all proposed modifications compared to the original SOMA-
CLP. The overall performance is evaluated and compared
using the Friedman rank tests [13] with the significance level
α = 0.05, accompanied by Nemenyi critical distance post-hoc
test for multiple comparisons [14]. The computed p-values
of all presented Friedman rank tests are lower than 0.05;
thus, all tests are relevant. The dashed line represents the
critical distance from the best-performed algorithm (the lowest

1https://github.com/TBU-AILab/SOMA CLP

mean rank). The lower the rank is, the better is the overall
performance of that algorithm on a particular dimension size.

Additionally, the Holm-Bonferroni method was used to test
significant differences among SOMA versions on each test
function and for all combinations of parametrization vector C.
The results are shown in Tables II and III for dimension sizes
10 and 20 respectively. The symbol

√
represents a significant

difference between two SOMA versions, and the symbol ×
stands for the insignificant difference. For example, in Table
II can be seen that for test function f4, the SOMA-CLP
is significantly different to Modification 2 only. Due to the
strict limitation of the number of pages,complete results are
available at the A.I.Lab website2.

The CEC 2021 benchmark itself is divided into four cat-
egories based on the configuration of the test functions. The
categories are:

• Non-shifted Cases – This category contains four config-
urations of test functions without the shift of the global
minima.

• Shifted Cases – This group encompasses four possible
configurations of test functions with the shift of the global
minima.

• Non-rotated Shifted Cases – This category consists of
two configurations of test functions.

• Rotated Shifted Cases – The last category again contains
only two configurations of test functions.

A more detailed explanation of the CEC 2021 benchmark
and the reasons behind the division into four categories can
be found in the technical report [2]. For more accurate com-
parisons and detailed analyses, the results presented here are
also divided into four cases. However, to compare the overall
performance of the modifications, all categories were joined
together, and the visual outputs of comparisons on both tested
dimension settings (10D and 20D) with rankings are given in
figures Figure 1 and Figure 2. Based on the Friedman rank
test for both dimension settings, it is clear that the average
performance of the proposed modifications 1 and 2 are not
statistically significantly better than the original SOMA-CLP.
However, the last modification 3 is significantly different.

A. Non-shifted Cases

The Friedman rank tests for Non-shifted Cases are depicted
in figures Figure 3 and Figure 4. The results are almost in-
distinguishable to the overall combined results (see Figure 1).
However, modification 2 using roulette selection of the leaders
in the third phase seems to be more suitable for the higher
dimension sizes problems.

B. Shifted Cases

The ranking for Shifted Cases are shown in Figure 5 and
Figure 6. Again, for the dimension size of 10, the results are
very similar to the overall performance in Figure 1. Never-
theless, the results for D = 20 have no significant difference
in performance among the suggested modifications and the

2https://ailab.fai.utb.cz/resources/



Fig. 1: Friedman rank tests for 10D.

Fig. 2: Friedman rank tests for 20D.
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Fig. 3: Friedman rank tests for 10D for Non-shifted Cases.
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Fig. 4: Friedman rank tests for 20D for Non-shifted Cases.

original SOMA-CLP. The results also suggest a shift of the
global minima may be beneficial to modification 3 in higher
dimensions, where all individuals migrate towards one selected
leader in phase three of the algorithm.

Nemenyi Critical Distance

1.95

2.638

2.25

3.162

SOMA-CLP Mod. 1 Mod. 2 Mod. 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Avg. Rank

Fig. 5: Friedman rank tests for 10D for Shifted Cases.

C. Non-rotated Shifted Cases

The ranking for Non-rotated Shifted Cases are given in
figures Figure 7 and Figure 8. The results for this category of
tests vary for different dimension sizes. For D = 10, there is no
significant difference between the original SOMA-CLP and the
first modification. Also, modifications 2 and 3 are significantly
worse than the original compared algorithm. The results for
dimensional size of 20 show no significant difference between
all three modifications and the original SOMA-CLP. However,
modification 1 maintains the best average rank. Therefore, a
limited number of cluster leaders for the third phase of the
algorithm seems to be more beneficial for this case.
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Fig. 6: Friedman rank tests for 20D for Shifted Cases.
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Fig. 7: Friedman rank tests for 10D for Non-rotated Shifted
Cases.
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Fig. 8: Friedman rank tests for 20D for Non-rotated Shifted
Cases.

D. Rotated Shifted Cases

The Friedman rank tests for Rotated Shifted Cases are
shown in figures Figure 9 and Figure 10. The results for
dimension D = 10 are similar to overall combined results, but
modification 2 has the best average rank for this case study.
For higher dimension settings, again there is no significant
difference between original SOMA-CLP and the proposed
tested modifications.

Nemenyi Critical Distance

2.15

2.6

2.15

3.1

SOMA-CLP Mod. 1 Mod. 2 Mod. 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Avg. Rank

Fig. 9: Friedman rank tests for 10D for Rotated Shifted Cases.
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Fig. 10: Friedman rank tests for 20D for Rotated Shifted Cases.

VI. CONCLUSION

This paper presents and analyses three different modifica-
tions of the recently proposed metaheuristic algorithm SOMA-
CLP. These new modifications have been designed to improve
the overall performance of the metaheuristic algorithm. The
results of the modifications were compared with the SOMA-
CLP using the CEC 2021 bound-constrained single objective
numerical optimization benchmark. All three modifications
were focused on one particular phase of the SOMA-CLP
algorithm aimed at exploitation.



f1
O M1 M2 M3

O −
√ √ √

M1 − −
√ √

M2 − − −
√

M3 − − − −

f2
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f3
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f4
O M1 M2 M3

O − ×
√

×
M1 − − × ×
M2 − − − ×
M3 − − − −

f5
O M1 M2 M3

O − × ×
√

M1 − − ×
√

M2 − − −
√

M3 − − − −

f6
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f7
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f8
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f9
O M1 M2 M3

O −
√ √

×
M1 − −

√ √

M2 − − −
√

M3 − − − −

f10
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

TABLE II: Holm-Bonferroni procedure for parametrization vector C=8 on 10D.

f1
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f2
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f3
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f4
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f5
O M1 M2 M3

O −
√

×
√

M1 − − × ×
M2 − − − ×
M3 − − − −

f6
O M1 M2 M3

O −
√

× ×
M1 − −

√
×

M2 − − − ×
M3 − − − −

f7
O M1 M2 M3

O − × ×
√

M1 − − × ×
M2 − − −

√

M3 − − − −

f8
O M1 M2 M3

O − × × ×
M1 − − × ×
M2 − − − ×
M3 − − − −

f9
O M1 M2 M3

O − × ×
√

M1 − − × ×
M2 − − −

√

M3 − − − −

f10
O M1 M2 M3

O −
√

× ×
M1 − −

√ √

M2 − − − ×
M3 − − − −

TABLE III: Holm-Bonferroni procedure for parametrization vector C=8 on 20D.

Despite the exciting discussion at the international genetic
and evolutionary computation conference, GECCO 2021, lead-
ing to proposed modifications, the results are inconclusive.
In many tested scenarios, the changes in SOMA-CLP algo-
rithm do not offer a significant improvement to the overall
performance. Furthermore, it can be concluded that the third
modification, where all individuals migrate to one selected
leader at the beginning of the migration, only compromises the
performance of the original algorithm. The version referred to
as modification 1, where a limited number of cluster leaders
are chosen for the third phase of the algorithm, is more
beneficial for the non-rotated shifted cases of the benchmark
set. And modification 2, which uses a roulette selection process
instead of the rank selection, showed improved performance
for rotated shifted benchmark cases.

Therefore, it is safe to conclude that more research is
needed, especially towards other possible changes in pop-
ulation dynamics and organization processes mechanisms.
Thanks to the benchmark classification into four categories of
test cases, it is possible for the researchers to track details

in performance changes of algorithm variants for different
test scenarios and if any modification introduces some bias,
for example, towards non-shifted global optima. The future
research will continue on a detailed investigation of the already
implemented modifications, for example, their impact on the
population diversity. Also, alterations with promising propos-
als to other phases of the algorithm will be investigated for the
SOMA-CLP, emphasizing better robustness and performance
improvement.
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