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Abstract
Measuring the population diversity in metaheuristics has become a common prac-
tice for adaptive approaches, aiming mainly to address the issue of premature
convergence. Understanding the processes leading to a diversity loss in a meta-
heuristic algorithm is crucial for designing successful adaptive approaches. In this
study, we focus on the relation of the neighborhood size and the rate of diversity
loss in the Particle Swarm Optimization algorithm with local topology (also known
as LPSO). We argue that the neighborhood size is an important input to consider
when designing any adaptive approach based on the change of population diver-
sity. We used the extensive benchmark suite of the IEEE CEC 2014 competition
for experiments.
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1 Introduction

Recording and adapting to the population diversity
value has lately become a popular component of many
metaheuristic optimizers [1, 6, 11, 12, 13]. There are
numerous measures for quantifying the population di-
versity [8, 9, 11]; however, usually, the diversity change
rate is more important for understanding the inner dy-
namic of the algorithm than any specific value of the
used numerical measure.
A rapid loss of diversity of the population might indi-

cate a poor exploration ability of the algorithm, while
minimal loss of diversity might prevent convergence of
the method at all [15]. One of the most popular meta-
heuristics, the Particle Swarm Optimization (PSO) [4],
is well known for fast and often premature convergence
[2]. One of the possible solutions to slow the diversity
loss is to limit the communication within the swarm.
Typically, the swarm is divided into several overlap-
ping sub-swarms, also known as local neighborhoods,
hence the Local PSO notation (LPSO) [3]. The popu-
lar choice for local neighborhood structure is the ring
topology [16].
In this work, we focus on the relation of the neigh-

borhood size and diversity loss in the above-mentioned
LPSO with ring topology. We set to answer the follow-
ing research questions:

1. Is there a direct relation between the neighbor-
hood size and the population diversity loss rate?

2. Could any particular neighborhood size setting
prevent significant diversity decrease indefinitely?

3. Is there a correlation between the rate of diversity
decrease and the improvement of cost function?

The rest of the paper is structured as follows: the
Particle Swarm Optimization algorithm is described in
section two; the experiments are described in sections
three and four. The results are discussed in section
five, preceding the conclusion.

2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization is one of the most popu-
lar metaheuristic optimizers. It draws its inspiration
from the movement patterns of bird flocks and fish
schools [4].

In the original variant, all artificial particles in the
swarm are attracted to two main points of interest,
the personal best-discovered solution of each particle
(pBest) and the (global) best solution within the whole
swarm (gBest). However, it has been discovered that
limiting the communication within the swarm into a
particular neighborhood (sub-swarm) could improve
the performance in specific scenarios [3]. In such a
scenario, the gBest is replaced with the lBest, refer-
ring to a (local) best solution within the pre-defined
neighborhood (sub-swarm) [3].

To build the local sub-swarms, several topologies are
commonly used. Among the most popular is the ring
topology, where each particle communicates only with
its direct neighbors in the logical (based on particles
IDs, not position) ring structure [16].

In Fig. 1, the ring topology is depicted. The num-
bers refer to the indexes of the particles in the popula-
tion, and three different neighborhood sizes (radiuses)
are exampled with the active particle being in the cen-
ter of the highlighted neighborhood (bold number).

In the first case (highlighted in green color), the ac-
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tive particle (#10) communicates only with its direct
neighbors (#9 and #11). Therefore, the total num-
ber of particles in this neighborhood is three, and the
neighborhood radius is one. Subsequently, this variant
is noted as LPSO 1.

Similarly, in the red example, the neighborhood ra-
dius is two (noted hereinafter LPSO 2), and the num-
ber of particles in the resulting communication bubble
is five. Finally, the example of a neighborhood radius
size of three (subsequently LPSO 3) is highlighted in
grey. As could be observed, the number of particles
within a neighborhood in this setting is seven.

As mentioned before, for each particular setting
of the neighborhood size (radius), the resulting sub
swarms are overlapping; therefore, the information of
a high-quality solution being discovered might eventu-
ally (depending on the total number of particles and
neighborhood size) affect all particles.

a) b)

c)

Figure 1: Ring topology example; neighborhood radius
a) one (green), b) two (red), and c) three (grey).

3 Experiment Setup

In the experimental part of this paper, we use three
above-described LPSO variants (LPSO 1, LPSO 2, and
LPSO 3). These variants differ only in the neighbor-
hood size setup while using the following control pa-
rameters setting (with respect to recommendations in
[2, 14]):

Number of particles (NP ): 40
Max. FEs: 1000 · dim
c1, c2 : 1.49618
w : 0.7298

In addition, we utilized a broad benchmark (IEEE
CEC 2014 Benchmark set [5]) of thirty test problems
to thoroughly investigate the behavior of the examined

variants facing various fitness landscapes [7]. This par-
ticular benchmark was selected for the wide range and
number of test problems and the high number of pos-
sible dimension size (dim) settings.
Given the computational complexity and memory

demands, the experiments were performed for dim:
10, 20, and 30 during our investigation. For similar
reasons, the maximal number of cost function evalua-
tions (Max. FEs) was set to 1000 · dim, and the best
cost function value and the population diversity were
recorded for every NP function evaluations.
To quantify the population diversity, we use the mea-

sure introduced in [10]. The diversity value is based on
the sum of deviations (1) of an individual’s components
from their corresponding means (2).

PD =

√√√√ 1

NP

NP∑
i=1

D∑
j=1

(xj,i − x̄j)
2

(1)

x̄j =
1

NP

NP∑
i=1

xj,i (2)

Where
i is the population member iterator
j is the vector component iterator.

4 Experiment Results

Firstly, we examine the diversity loss rate while opti-
mizing the benchmark mentioned above. Thirty ran-
domly initialized runs were performed for each variant
and test function, and the results averaged.
In the first experiment, we compute the initial pop-

ulation diversity value and observe its decrease during
the optimization process. We record the number of cost
function evaluations (FEs) it takes the population di-
versity to decrease to 90%, 80%, . . . , 10% of the initial
value.
In Table 1, we summarize the first experiment results

for dim: 30. Note: the values of FEs are rounded to
the nearest NP multiple (see Section 3 for details).
For additional insight, we present the Pearson’s cor-

relation between the average diversity history and the
average cost function value history in Table 2. The
lowest and highest correlation value are highlighted.
According to Table 1, the smaller the neighborhood’s

size, the slower the diversity loss is. In several cases,
the LPSO 1 retains more than 70% of its initial di-
versity over the whole course of optimization. In such
cases, it is necessary to consult Table 2. A high cor-
relation might point at simultaneous stagnation of di-
versity and stagnation of cost function value (see, e.g.,
f11 and f12).
Providing further insight for the highlighted results

in Table 2, we graphically compare the mean diversity
history in Fig. 2 (for f3) alongside the corresponding
average cost function value history in Fig. 3 and the
same for f13 in Fig. 4 and Fig. 5.
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Table 1: : Average number of FEs to drop to x% of initial diversity; dim :30.

Alg. f(x) 90% 80% 70% 60% 50% 40% 30% 20% 10% f(x) 90% 80% 70% 60% 50% 40% 30% 20% 10%

LPSO 1

f1

80 80 200 840 12800 - - - -

f16

80 120 1280 - - - - - -

LPSO 2 80 80 120 320 1240 6320 - - - 80 80 400 7840 - - - - -

LPSO 3 80 80 120 120 600 2640 11640 - - 80 80 120 1840 - - - - -

LPSO 1

f2

80 80 120 240 600 1080 1840 3200 7720

f17

80 120 280 - - - - - -

LPSO 2 80 80 120 120 360 640 1160 2160 4800 80 80 120 800 - - - - -

LPSO 3 80 80 120 120 280 520 880 1800 4400 80 80 120 280 1560 - - - -

LPSO 1

f3

80 120 1440 7040 15040 23160 - - -

f18

80 80 120 560 - - - - -

LPSO 2 80 80 120 2200 7680 14680 20240 28480 - 80 80 120 320 14800 - - - -

LPSO 3 80 80 120 1160 4640 10400 15200 22080 - 80 80 120 120 560 19240 - - -

LPSO 1

f4

80 80 120 280 680 1360 2640 - -

f19

80 80 120 560 2040 - - - -

LPSO 2 80 80 120 120 400 760 1440 4040 - 80 80 120 240 680 2440 - - -

LPSO 3 80 80 120 120 320 600 1200 2720 - 80 80 120 120 400 1080 3200 - -

LPSO 1

f5

80 120 - - - - - - -

f20

80 120 800 14200 - - - - -

LPSO 2 80 80 1040 - - - - - - 80 80 240 1600 17720 - - - -

LPSO 3 80 80 520 - - - - - - 80 80 120 680 4840 28600 - - -

LPSO 1

f6

80 120 480 - - - - - -

f21

80 120 360 - - - - - -

LPSO 2 80 80 120 2840 - - - - - 80 80 120 1320 - - - - -

LPSO 3 80 80 120 440 2360 - - - - 80 80 120 360 - - - - -

LPSO 1

f7

80 80 120 320 600 1040 1720 2840 5160

f22

80 120 280 26640 - - - - -

LPSO 2 80 80 120 120 360 640 1160 2000 4000 80 80 120 320 - - - - -

LPSO 3 80 80 120 120 280 480 880 1640 3440 80 80 120 240 2880 - - - -

LPSO 1

f8

80 80 120 360 1120 - - - -

f23

80 80 120 400 1080 2520 4360 6600 10840

LPSO 2 80 80 120 120 520 2240 - - - 80 80 120 240 520 1280 2400 4200 7560

LPSO 3 80 80 120 120 360 960 27800 - - 80 80 120 120 360 840 1920 3640 6520

LPSO 1

f9

80 80 120 400 2800 - - - -

f24

80 80 120 320 880 2840 - - -

LPSO 2 80 80 120 120 720 4720 - - - 80 80 120 120 480 1040 20360 - -

LPSO 3 80 80 80 120 440 2160 - - - 80 80 120 120 320 680 3040 - -

LPSO 1

f10

80 120 1960 - - - - - -

f25

80 80 120 1720 24040 - - - -

LPSO 2 80 80 440 - - - - - - 80 80 120 280 2160 17200 - - -

LPSO 3 80 80 280 6280 - - - - - 80 80 120 240 760 4480 22880 - -

LPSO 1

f11

80 120 - - - - - - -

f26

80 80 120 320 2080 - - - -

LPSO 2 80 80 400 - - - - - - 80 80 120 120 840 7200 - - -

LPSO 3 80 80 240 4120 - - - - - 80 80 120 120 400 2200 27760 - -

LPSO 1

f12

80 120 - - - - - - -

f27

80 120 320 1000 4920 - - - -

LPSO 2 80 80 920 - - - - - - 80 80 160 400 1120 6080 - - -

LPSO 3 80 80 480 - - - - - - 80 80 120 280 560 1640 9960 - -

LPSO 1

f13

80 80 120 360 680 1080 1800 - -

f28

80 120 600 1040 1560 2080 3120 - -

LPSO 2 80 80 120 120 400 680 1160 21080 - 80 80 280 520 760 1200 1800 4320 -

LPSO 3 80 80 120 120 320 480 840 6680 - 80 80 160 360 560 800 1200 2400 -

LPSO 1

f14

80 80 120 320 640 1080 1680 2840 -

f29

80 200 520 1440 - - - - -

LPSO 2 80 80 120 120 400 640 1120 2040 - 80 120 200 440 1000 - - - -

LPSO 3 80 80 120 120 280 520 880 1640 - 80 80 160 320 560 1160 - - -

LPSO 1

f15

80 80 120 280 720 1320 2440 4840 -

f30

80 160 480 12320 - - - - -

LPSO 2 80 80 120 120 360 760 1600 3000 - 80 120 200 560 4840 - - - -

LPSO 3 80 80 120 120 280 600 1240 2640 - 80 80 120 280 1040 3040 12760 - -

Finally, we provide a direct graphical comparison of
the final diversity value for each function in Fig. 6.

5 Discussion

As presented in Table 1, the neighborhood size directly
impacts the speed of population diversity decrease. In-
tuitively a more restricted communication should lead
to a slower convergence of the swarm. There are, how-
ever, additional, less apparent observations possible in

Table 1. While the neighborhood size factors the speed
of diversity decrease, the fitness landscape character-
istics (problem complexity) seem to have a dominant
role in the final diversity value. In some cases (e.g.,
f5, f10, f11, or f12), the diversity decreases fast, but
only to a certain threshold of initial diversity percent-
age (e.g., 70% or 60%) and will not decrease further in
the given time frame (1000 · dim FEs).

In contrast, in other cases (e.g., f2, f7, f15, or f23),
the population diversity drops to (and under) 10% of
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Table 2: Pearson’s correlation between the average di-
versity history and the average cost function value his-
tory for dim : 10, 20 and 30.

dim : 10 20 30

f(x) LPSO 1 LPSO 2 LPSO 3 LPSO 1 LPSO 2 LPSO 3 LPSO 1 LPSO 2 LPSO 3

1 0.74 0.73 0.68 0.66 0.62 0.63 0.88 0.85 0.83

2 0.91 0.88 0.83 0.86 0.80 0.79 0.87 0.83 0.81

3 0.40 0.42 0.45 0.33 0.28 0.31 0.27 0.27 0.22

4 0.84 0.87 0.86 0.79 0.80 0.77 0.84 0.83 0.79

5 0.80 0.77 0.80 0.67 0.73 0.74 0.77 0.82 0.79

6 0.94 0.97 0.98 0.98 0.99 0.99 0.81 0.87 0.92

7 0.85 0.85 0.85 0.86 0.85 0.84 0.86 0.84 0.83

8 0.95 0.94 0.93 0.92 0.92 0.93 0.87 0.89 0.90

9 0.97 0.97 0.97 0.94 0.93 0.94 0.89 0.93 0.91

10 0.81 0.85 0.86 0.67 0.79 0.84 0.74 0.81 0.86

11 0.81 0.83 0.90 0.71 0.79 0.89 0.64 0.79 0.90

12 0.77 0.77 0.82 0.71 0.78 0.82 0.76 0.81 0.76

13 0.99 0.99 0.98 0.99 0.99 0.99 1.00 0.99 0.99

14 0.93 0.93 0.93 0.95 0.95 0.95 0.94 0.94 0.95

15 0.53 0.58 0.62 0.50 0.52 0.55 0.42 0.44 0.49

16 0.90 0.93 0.91 0.91 0.89 0.92 0.88 0.89 0.91

17 0.82 0.71 0.75 0.86 0.81 0.86 0.66 0.62 0.65

18 0.93 0.94 0.83 0.83 0.73 0.71 0.84 0.60 0.71

19 0.93 0.94 0.88 0.86 0.87 0.83 0.88 0.85 0.81

20 0.63 0.59 0.58 0.54 0.51 0.53 0.52 0.56 0.48

21 0.73 0.72 0.66 0.90 0.87 0.88 0.86 0.87 0.89

22 0.91 0.87 0.90 0.97 0.93 0.90 0.88 0.81 0.69

23 0.66 0.67 0.68 0.61 0.60 0.63 0.58 0.60 0.62

24 0.98 0.98 0.99 0.96 0.96 0.95 0.94 0.94 0.94

25 0.88 0.95 0.82 0.97 0.89 0.82 0.86 0.90 0.88

26 0.72 0.70 0.68 0.70 0.68 0.66 0.80 0.73 0.75

27 0.69 0.75 0.72 0.76 0.76 0.78 0.80 0.77 0.77

28 0.57 0.65 0.69 0.55 0.63 0.66 0.55 0.60 0.67

29 0.46 0.81 0.84 0.72 0.79 0.87 0.37 0.38 0.36

30 0.84 0.89 0.86 0.90 0.90 0.89 0.79 0.66 0.59

the initial value. Nevertheless, when consulting this
phenomenon with Table 2, there is evidence that keep-
ing high diversity does not guarantee further improve-
ment of the cost function value and vice versa. In other
words, keeping the population diverse is advantageous
for some fitness landscapes, while for others, it seems
to have little effect, despite the neighborhood size fac-
toring into the diversity decrease rate.

Observing further from Table 1, it seems that the
difference in the speed of diversity decrease is much
more profound between LPSO 1 and 2 than LPSO 2
and 3. Interestingly, this is not the case in Table 2,
where the problem’s dimensionality has a significantly
more important role in affecting the correlation value
than the neighborhood size.

Based on the results, there seems to be a strong cor-
relation between the average diversity history and the
average cost function value history in many cases (see
Fig. 4 and Fig. 5) with several exceptions (e.g., Fig.
2 and Fig. 3). The data presented in Table 2 hint
that the correlation values are highly dependent on
the fitness landscape and the problem’s dimensionality,
producing some unpredictable results (see, e.g., f29).
The difference in the correlation values will motivate a
follow-up study investigating if the correlation value is
linked to any specific characteristic of the fitness land-
scape and how it translates into the algorithm’s actual
performance and convergence behavior.

In Fig. 6, the final diversity values for all three algo-
rithms and thirty test problems are depicted in direct

Figure 2: Average diversity history f3; dim : 30.

Figure 3: Average cost function value history f3; dim :
30.

comparison. While the general trends are similar, there
seem to be irregularities in the pattern, likely caused
by certain features of the particular fitness landscape,
that are worth investigating in the future.
Overall, the results show a strong connection be-

tween the neighborhood size and the diversity loss.
In some cases, the decrease of diversity seems to be
stopped or marginalized in the given time frame; how-
ever, according to the correlations with the algorithm’s
performance, a prevailing high diversity does not guar-
antee an ever-improving value of the cost function.
It is essential to understand that loss of diversity

alone might indicate various states of the population,
however with the added information of the algorithm
performance, quantified in the form of mutual correla-
tion, it is, e.g., possible to recognize the local optima
containment. As the diversity drops but the cost func-
tion value remains the same, the correlation value is
bound to be low.
Regarding the used benchmark set, it is necessary to

emphasize that the primary goal of this paper is not a
performance study or comparison with the participat-
ing algorithms and with others in later publications,
i.e., to adhere to the exact definition of performance
experiments according to the technical report.

6 Conclusion

This work focused on providing more insight into the
relation of population diversity and neighborhood size
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Figure 4: Average diversity history f13; dim : 30.

Figure 5: Average cost function value history f13; dim :
30.

Figure 6: Average final diversity value for each func-
tion; dim : 30.

in the Particle Swarm Optimization algorithm with lo-
cal topology organized into a logic ring. In this topol-
ogy, the communication is limited into overlapping sub-
swarms that are constructed not from the positions of
the particles in the search space but their IDs.
Regarding the research questions:

1. Is there a direct relation between the neighbor-
hood size and the population diversity loss rate?

2. Could any particular neighborhood size setting
prevent significant diversity decrease indefinitely?

3. Is there a correlation between the rate of diversity
decrease and the improvement of cost function?

We have shown that there is a direct relation be-

tween the diversity loss rate and the neighborhood size.
It seems that by limiting the neighborhood size only, it
is possible in the same cases to maintain a high diver-
sity; however, this does not guarantee a continuation
of cost function value improvement. Further, in many
cases, there is a strong correlation between the popu-
lation diversity history and cost function value history,
prompting our future research towards this direction.
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