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Abstract: Lignin is a natural biopolymer. A vibrant and rapid process in the synthesis of silica
nanoparticles by consuming the lignin as a soft template was carefully studied. The extracted
biopolymer from coir pith was employed as capping and stabilizing agents to fabricate the silica
nanoparticles (nSi). The synthesized silica nanoparticles (nSi) were characterized by ultraviolet–visible
(UV–Vis) spectrophotometry, X-ray diffraction analysis (XRD), Scanning Electron Microscope (SEM),
Energy-Dispersive X-ray Analysis (EDAX), Dynamic Light Scattering (DLS) and Fourier-Transform
Infrared Spectroscopy (FTIR). All the results obtained jointly and independently verified the formation
of silica nanoparticles. In addition, EDAX analysis confirmed the high purity of the nSi composed
only of Si and O, with no other impurities. XRD spectroscopy showed the characteristic diffraction
peaks for nSi and confirmed the formation of an amorphous nature. The average size of nSi obtained
is 18 nm. The surface charge and stability of nSi were analyzed by using the dynamic light scattering
(DLS) and thus revealed that the nSi samples have a negative charge (−20.3 mV). In addition, the seed
germination and the shoot and root formation on Vigna unguiculata were investigated by using the nSi.
The results revealed that the application of nSi enhanced the germination in V. unguiculata. However,
further research studies must be performed in order to determine the toxic effect of biogenic nSi
before mass production and use of agricultural applications.

Keywords: silica nanoparticles; coir pith; sustainability; phytochemical analysis; bioeconomy

1. Introduction

There is a broad consensus that the nanoparticle is a material with at least one dimen-
sion less than 100 nm. Nanoparticles can be distinguished into nanopowders, nanoclusters,
nanocrystals and many other groups which can be further subdivided [1]. At the end of
the 20th century, nanotechnology was perceived as the next game-changer [2]. Based on
the laboratory experiments, as more and more nanomaterials of different compositions,
sizes and shapes became available [3], dramatic changes were predicted to improve human
lives [4]. Nanomaterials showed varied optical, catalytic, magnetic and other chemical–
physical characteristics, including distinct biological properties, such as antimicrobial and
anti-inflammatory activities [5]. Most of these excellent properties have been repeatedly
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and independently confirmed in the chemical industry [6], metal production [7], agricul-
ture [8] and energetics [9] (Mardoyan and Braun 2015), to name a few. However, as fast as
the nano industry grew initially, it hit its upper limit about a decade ago, and a price ceiling
has been slowing down its further development since then [10]. A plethora of methods
have been developed to synthesize various nanomaterials of different characteristics. The
two most important production directions are A/electrochemical and chemical reduc-
tion [11] and B/photochemical and physical vapor condensation [12]. Carbon nanotubes,
quantum dots, nanorods, nano capsules, nano emulsions, fullerenes, metallic nanoparticles,
ceramic nanoparticles and polymer nanoparticles hold the largest market share [13,14],
whereas usual wholesale prices range from 4 to 18 €g−1 [15]. Although these conventional
production processes make it possible to achieve nanoparticles with perfect shapes and
a purity higher than 99.995%, it is the high production costs (about 90% of the market
price) that block further industry development [16,17]. To make matters worse, all of these
various combinations of chemical and physical methods are energy demanding and require
hazardous reagents (mostly stabilizing and reducing agents) during almost all production
phases [18], not to mention various biological risks to the environment [19]. Hence, there is
a wide demand for the definition of less demanding production technologies that would
improve the competitiveness of the entire nanotechnology industry [20].

Si and SiO2 nanomaterials have drawn more attention by various entrepreneurs
due to their widespread application in the advance of new technologies in various ar-
eas [21,22]. They have a wide range of applications in industries such as agriculture,
pharmacy, pigments, catalysis, electronics and cosmetics [23,24]. There are numerous types
of nSi, including non-porous, mesoporous, hollow mesoporous and core–shell, all of which
can be modified on the surface [25,26]. Mesoporous nSi have few flexible and desirable
properties, such as biocompatibility, tenable pore size and volume for delivery of targeted
drugs [27]. Using Tetra ethyl ortho silicate [Si(OC2H5)4,TEOS] as a precursor is the most
straightforward and cost-effective method for producing spherical, monodispersed and
nanosized nSi [28]. In plants, silica is important for inducing resistance against the biotic
and abiotic stresses [29]. The recent advances in nanotechnology and its use in agriculture
fields are astonishingly increasing to improve crop production [30].

There are various methods, namely Sol-Gel, reverse microemulsion and flame-synthesis
methods employed in extracting silica from waste materials. The Sol-Gel method is the
most common approach for research purposes. The original method of Stöber et al. [31]
has largely altered and modified the synthesis of silica via hydrolysis–condensation reac-
tion. The polymeric networks of gels were formed from silicon alkoxide/halide gels, and
polymeric gel is otherwise known as as xerogel [32]. Many silica-based nanomaterials and
derivatives are produced by using the Sol-Gel method. The acids HCl, H2SO4, carboxylic
acid, citric acid and nitric acid have been utilized for the production of highly pure amor-
phous silica from rice husks and oil palm ash [33–35]. TEOS is a Sol-Gel precursor for the
production of silica-based nanomaterials, because it is able to bond with polymers via the
creation of a link between the hydroxyl group of polymers and silanol groups through
covalent and hydrogen bonds [36]. This research motivated us to use alternative sources of
production of silica nanoparticles.

Coir pith is a by-product of padding that is employed in mattress factories. It is a
lignocellulosic biomass that is produced during the extraction of coir fiber from coconut
husk [37]. It has a huge amount of lignin. It accumulates near coir processing industries
as a waste product and caused environmental and disposal complications. The raw coir
pith comprises 30% lignin, 26.5% cellulose, 26% carbon and 17.5% others [38]. Hence, this
investigation focused on the usage of coir pith in the production of nanosilica.

Following the abovementioned, our hypothesis addressed whether it might be en-
vironmentally and techno-economically reasonable to produce nSi via the acidic Sol-Gel
method (biopolymer and TEOS as Si precursor) as a tool to improve seed germination
(shoot and root formation, in particular).
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2. Materials and Methods
2.1. Extraction of Lignin Form Coir Pith

Raw coir pith was obtained from the coir-processing industry. It was cut 2 cm, and the
biomass obtained was immediately washed under running tap water for about 5 min and
then with 20 L of distilled water until no impurities remained. A total of 20 g of powdered
coir pith was treated with 200 mL of toluene–ethanol (2:1 ratio (v/v)) for dewaxing process.
Then lignin was extracted from dewaxed coir pith through the alkali extraction method.
After that, a dark brownish solution was attained and separated via filtration. Next, the
filtrate was concentrated by using a hot-air oven at 60 ◦C. The ethanol and HCl were mixed
to remove the soluble cellulose. The extracted lignin was kept at −4 ◦C for production of
nanomaterials. The amount of lignin (24.5 ± 2.5 g/kg) from the coir pith was assessed by
using the protocols of Periakaruppan et al. [39].

2.2. nSi Synthesis

A total of 100% of coir pith mediated lignin (obtained according to Section 2.1) was
mixed with 12.5 mL of Tetraethyl orthosilicate (99% purity, CAS 78-10-4, MERCK Inc.,
Darmstadt, Germany) as a precursor and ethanol (95%, MERCK Inc., Darmstadt, Germany)
and continuously stirred for 10 min at room temperature. Then 1 M HCl (99% purity,
CAS 30827-99-7, MERCK Inc., Darmstadt, Germany) was added to the mixture and slowly
stirred for 15 min at room temperature. At the end, the jelly-like precipitation was formed.
The precipitate was kept for 10 h in an EKOCELL drier (MMM Group, Planegg, Germany)
at 90 ◦C for drying. The white-color powder was obtained at the last, and it was stored in
an airtight plastic container for further studies [19] (Al-Azawi et al., 2019). Here, lignin and
its monomers acted as reducing and capping agents for the formation of silica nanoparticles.
Lignin and TEOS were reacted and formed as silica nanoparticles through polymerization.
Lignin was an effective chelating agent.

2.3. nSi Characterization

Lignin-mediated nSi was slowly dissolved (1:10) in distilled water of analytical purity
and sonicated (five 20 kHz cycles) via UP100H ultrasonic homogenizer (Hielscher Ultrason-
ics, Teltow, Germany) via the at room temperature. The absorption maxima of nSi solution
were determined by the C10082MD (Hamamatsu, Japan) UV–Visible spectrophotometer
from 200 to 800 nm. Then nSi was placed on the quartz slide, and then the IFS 66v/S
vacuum FTIR spectrometer (Bruker optics, Woodlands, TX, USA) was employed to observe
the FTIR spectra of materials in the range of 4000–400 cm−1. An X-ray diffractometer
(XRD) was used to analyze the nature of nSi. The sizes of the nSi samples were calculated
by the Scherrer’s formula. The surface morphology of synthesized silica nanoparticles
was observed by using the JSM–7610F Schottky field emission scanning electron micro-
scope (JEOL, Tokyo, Japan). Epsilon Xflow (Malvern P Analytical, Ltd., Malvern, United
Kingdom) energy-dispersive X–ray analyzer (EDAX) was used to find out the elemental
composition (atomic weight percentage of elements) of the nSi. The zeta potential of the
nSi was determined by the measurement of the electrophoretic mobility, using the LS 13
320 XR (Beckman Coulter, Inc., Pasadena, CA, USA) particle-size analyzer. The thermal
stability of synthesized silica nanoparticle was assessed by TGA/DSC 3+ (Mettler Toledo,
Columbus, OH, USA) thermogravimetric analyzer with a small furnace.

2.4. Agricultural Application

Seeds of V. unguiculata were obtained from a local botany garden. The collected
seeds were surface sterilized with Savo Original (Unilever, Prague, Czech Republic) liquid
disinfectant and washed three times with distilled water. Four different concentrations
(25%, 50%, 75% and 100%) of nSi were prepared by using distilled water and denoted as
T1, T2, T3 and T4, respectfully. The control (distilled water) was maintained and referred
to as T5. Then, sterile Petri dishes were taken, and 10 seeds were placed on them. The
5 mL of respective concentration of nSi was poured on the corresponding Petri plates. Next,
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all of the plates were placed at room temperature in dark condition for 3 days. Three
independent replications were made for this study. Seeds with a root tip of 1 cm and
higher were considered as the germinated seeds. Lengths of roots and shoots (in cm) were
observed after 3 days of incubation. After germination, the lengths of roots and shoots of V.
unguiculata were measured.

3. Results and Discussion
3.1. Physiochemical Characterization
3.1.1. Analysis of Optical Properties

The UV–visible absorption spectra of nSi were recorded as depicted in Figure 1. The
absorption spectra of nSi were found to be 280–350 nm. The bandgap vibration of electronic
transition was found at the broad value of 305 nm for soluble silica suspension. In line with
this, Patil et al. [40] concluded that the UV–visible spectrum of nSi displayed the maximum
absorption band edge of 310 nm. The optical property of silica nanomaterials is related to
the occurrence of various defects caused by the partial formation of a Si-O-Si tetrahedral
network at the surface, namely silicon and oxygen vacancies.
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3.1.2. Analysis of Functional Groups

FTIR characterization is routinely used to identify the molecules and their functional
group present in the synthesized nSi. As shown in Figure 2, the FTIR spectra of lignin
displayed different peaks at 3363, 2137, 1643, 1388, 678 and 555 cm−1, whereas the FTIR
spectrum of the nSi produced successive absorption peaks at 1064, 948, 794, 555 and
424 cm−1. The oxide group of nSi was observed at 794, 555 and 424 cm−1, respectively. The
FTIR analysis concludes that the formation of silica nanoparticles through the presence of
asymmetric stretching vibration of Si-O-Si at 3363 cm−1 and another peak at 948 cm−1 refers
to Si-OH bond. A peak at 424 cm−1 corresponds to Si-O-Si bending (Figure 2). Shoulder
(Si-O-Si) asymmetric stretch was observed at a peak of 1064 cm−1. The bands at 794 and
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948 cm1 are connected with the complex Si-O-Si symmetric bond stretching vibration.
A peak of 2978 cm−1 denotes the C=O vibrations. An absorption peak at 1643 cm−1

corresponding to the amide I bond of proteins formed due to carbonyl stretch (Figure 2B).
Yadav et al. [41] and Imoisili et al. [42] reported similar FTIR signals for their nSi.
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Figure 2. FTIR spectra, where A = nSi and B = extracted lignin from coir pith. (Metal oxide group of
the nSi was observed).

3.1.3. XRD Analysis

XRD was used to determine the structure of nanoparticles. Figure 3 shows the XRD
analysis of chemically synthesized nSi. The XRD pattern of nSi displays a strong narrow
and sharp peak, indicating that the nSi samples obtained are of high quality and have an
amorphous nature. The XRD of the nSi revealed the characteristic peaks at 101 planes and
the amorphous nature at a diffraction angle of 2θ = 20◦. The average size was calculated
by using the Scherrer equation (D = KλβCosθ−1), where D is the size, λ is the wavelength
of X-ray, θ is the Braggs angle (in radians) and β is the full width at half maximum of the
peak (in radians). The average size of synthesized nSi is 18 nm. Similarly, Rojas et al. [43]
reported that their Si synthesized from rice husk exhibited a most prominent peak at
2θ = 22.01◦, corresponding to the (101) plane. The silica nanoparticles produced by Ghani
et al. [44] had an amorphous nature and It was confirmed through XRD analysis. Silica
nanoparticles were synthesized by using the raw materials of rice hulls in a simple and
inexpensive method, and synthesized silica nanomaterials had an amorphous structure [45].
The amorphous structure of nano-SiO2 was predicated by using the XRD technique [46].
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Figure 3. XRD analysis of nSi.

3.1.4. SEM Analysis

The SEM image of nSi synthesized by using extracted lignin from coir pith is presented
in Figure 4. The newly proposed method revealed the monodispersed distribution of
particle sizes in the surface morphology, as well as the size of nSi. The images display the
spherical nature of nSi. It depicts mostly spherical nSi specimens, as well as the number of
aggregates, and some of them represent nanoparticles with an undefined shape. The results
presented are corroborated with Verma et al. [47], who synthesized the spherical-shaped
nSi, and the morphology was indirectly confirmed by using SEM analysis.
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3.1.5. EDAX Analysis

EDAX analysis confirms the purity of the nSi formed by extracted lignin from coir pith.
Figure 5 displays the spectra of nSi, using energy-dispersive X-ray spectroscopy (EDAX).
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Only the signal peaks corresponding to Si (25.58%), O (41.58%), Na (12.12%) and Cl (20.72%)
(Table 1) were visible in the spectra. The EDX spectrum obtained shows that the peaks
refer to silica and oxygen, indicating that the prepared nanoparticles are silica. From the
results, it was confirmed that impurity elements, such as sodium and chloride, are present
in the samples. Na and Cl were derived from partially purified lignin because lignin from
coir pith was purified and concentrated by HCl and NaOH. In the same manner, Kao
et al. [48] observed a closely related result of nSi synthesized from chemical mechanical
polishing (CMP) steel substrate and reported that the nanoparticles that resulted were
clearly composed of Si and O elements.

Table 1. Elemental composition for nSi.

S. No. Elements Weight %

1 O K 41.58
2 Na K 12.12
3 Si K 25.58
4 Cl K 20.72

Total 100
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3.1.6. Analysis of Zeta Potential and Thermal Stability

Zeta potential analysis is used to assess the electrophoretic mobility of nanomaterials.
The zeta potential of synthesized nSi was –20.3 mV (Figure 6). The synthesized nanoma-
terials have a negative charge and are highly stable. Babu et al. [49] demonstrated the
green approach for the synthesis of nSi from Cynodondactylon. They performed the zeta
potential studies and reported a zeta potential value of nSi(−23.3 mV). Figure 7 refers to the
spectrum of thermal stability for the synthesized nSi obtained. A 35% weight loss occurred
at 150 ◦C, and gradually the weight reduced up to 45% at 1000 ◦C. It shows that totally 45%
of weight loss appeared between 100 and 1000 ◦C in nSi. The weight loss was attributed
to the loss of organic solvents and hydroxyl groups from nSi (it was investigated by the
exothermic peak in the DTA curve), where the silanol groups were dehydrated at the end.
Ethanol was employed during the synthesis of nSi. The hydroxyl group were fabricated
with nSi, and the loss occurred between 50 to 150 ◦C. The weight of nSi was stable at the
range of 200–1000 ◦C. The result clearly determined that the reduction of weight loss occurs
at increased heat treatment. The weight loss occurred as a result of the decomposition and
evaporation of the organic content of the modified silica nanoparticles [50]. The loss of
residual organic solvent and physisorbed water from lignin-mediated silica nanoparticles
occurred at 150 ◦C. These results clearly reveal that the degree increase resulted from the
reduction of the amount of the modified nanosilica [50].
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3.1.7. Market Analysis

The market analysis shows that wholesale pricing of nSi of similar characteristics is
somewhere in the range of 2.4 up to 3.3 € g−1. The cost breakdown (Table 2) shows that
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the production cost of the nSi obtained by this technology might be expected to be around
1.3 €g−1, from which a high degree of cost competitiveness can be expected [51].

Table 2. Cost breakdown of the nSi production.

Item Cost Related to Production of 1 g of nSi (€)

Feedstock and processing 0.1
Reactants 0.3

Energy 0.2
Equipment depreciation 0.4

Labor 0.2
Directing and others 0.1

Total 1.3

3.2. Agricultural Application

With regard to the industrial application, it is evident that the seed germination and
shoot and root length of V. unguiculata were improved by the lowest concentration of nSi
(Table 3). The maximum seed germination was obtained after 72 h. The root and shoot
lengths of the seedling were significantly higher in the T1 treatment (25% of nSi), whereas
the minimum seed germination was observed for the T3 treatment (75% of nSi). The shoot
and root lengths were minimized at a high concentration of nSi-treated V. unguiculata.
The lowest concentration of silica nanoparticles stimulated the biochemical metabolism
for better seed germination and root and shoot formation. The highest concentration of
nanoparticles inhibited the seed germination through the blocking of the biochemical
metabolism. Similarly, the elongation of the root and shoot, the relative water content
(RWC) and the activity of photosynthetic pigments were enhanced in Zea mays by the
treatment of silica nanoparticles [52].

Table 3. Seed-germination analysis.

Treatment nSi
Concentration Seed Germination (%) Shoot Measurement

(cm)
Root Measurement

(cm)

T1 25% 80 4.7 ± 0.2 1.5 ± 0.2
T2 50% 65 2.0 ± 0.1 0.7 ± 0.1
T3 75% 40 1.0 ± 0.2 0.5 ± 0.1
T4 100% 30 No shoot formation No root formation
T5 - 80 4 ± 0.2 1.0 ± 0.1

4. Conclusions

A method to synthesize nSi without using harmful chemicals was demonstrated. The
nSi were synthesized by using lignin and TEOS as silica precursors. Lignin acts as a capping,
stabilizing and reducing agent for the synthesis of nSi.

The amorphous nature of nSi was confirmed by XRD analysis, and no crystalline phase
was observed. The fabrication of nSi occurred due to crosslinking of lignin.

FTIR analysis of nSi revealed the formation of a Si-O-Si symmetric bond. A 45% of
weight loss was observed by TGA analysis, due to the evaporation of the organic content
of the modified nSi.

Characteristics by UV–visible spectroscopy, XRD, SEM, EDAX, FTIR and zeta potential
analysis confirmed that the nSi specimens obtained meet all of the established commercial
standards (average nanoparticle size obtained is 18 nm).

In addition, the low concentration of nSi was found to enhance the germination of
seedling. Taking into account that the production costs are also lower than the conventional
chemical and physical methods, it can be assumed that the presented technology hides
an interesting commercial potential. This synthesis condition is so fascinating from the
economical point of view for mass production of nSi in industrial scales.
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