
TEM Journal. Volume 10, Issue 4, Pages 1495-1499, ISSN 2217-8309, DOI: 10.18421/TEM104-01, November 2021.

TEM Journal – Volume 10 / Number 4 / 2021. 1495

Chi-square of Pseudorandom Number
Generator of Normal Distribution in C++17

Pavel Tomášek, Hana Tomášková, Jakub Rak

Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic

Abstract – High quality pseudorandom number
generators were needed in many software solutions
throughout the history of programming. Nowadays,
these generators play an even more significant role in
software development. Generally, these generators
bring a certain level of coincidence in some algorithms
which need it. This work focuses on the statistical
evaluation of one of the representatives of the
generators using Pearson's Chi-square goodness of fit
test. The generator of pseudorandom numbers under
test is the specific implementation in the modern
standard of the programming language of C++ (the
standard of C++17). Results presented in this paper
inform whether the numbers generated by the selected
generator follow the desired probability distribution
(normal).

Keywords – chi-square, pseudorandom number
generator, C++, normal distribution

1. Introduction

Numbers obtained from pseudorandom generators
are used in many software solutions. Reasons for the
usage of these pseudorandom numbers vary from
implementation of a type of (pseudo) coincidence
(pseudorandom selection from a set of values, testing
purposes), utilization in stochastic methods,

DOI: 10.18421/TEM104-01
https://doi.org/10.18421/TEM104-01

Corresponding author: Pavel Tomášek,
Tomas Bata University in Zlín, Czech Republic
Email: tomasek@utb.cz

Received: 23 July 2021.
Revised: 15 September 2021.
Accepted: 22 September 2021.
Published: 26 November2021.

© 2021 Pavel Tomášek, Hana Tomášková &
Jakub Rak; published by UIKTEN. This work is licensed
under the Creative Commons Attribution‐
NonCommercial‐NoDerivs 4.0 License.

The article is published with Open Access at
www.temjournal.com

evolutionary algorithms to approximation of some
natural behaviour in natural sciences and engineering
or utilization in sensitivity analyses. Therefore, the
findings presented in this paper may be relevant in
the areas of mathematics, computer science
(including artificial intelligence, software
development), economy, physics, engineering, and
natural sciences as well.

The numbers generated by a pseudorandom
number generator (PRNG) must usually fulfil some
criteria. These criteria may be simply represented as
a set of boundaries of a desired interval (lower and
upper limits) and the PRNG can be set to a specific
probability distribution. Further parameters of the
target probability distribution must be specified in
such a case.

Some software applications do not rely on a precise
randomness or on the probability distribution of the
generated numbers. However, at least a lower
fraction does [1]. Therefore, in these applications
relying on high-quality PRNGs, generators must be
tested. And this paper focuses on one specific subset
of the aforesaid group of PRNGs. It focuses on the
testing of the PRNG of normal distribution available
in the modern standard of the programming language
of C++.

2. Problem Formulation

High quality PRNGs following a desired
probability distribution are needed in many software
solutions [1], as mentioned in the abstract and in the
introduction of this paper.

C++ is a widely spread programming language
which includes an implementation of a PRNG with
variants of probability distributions of the generated
numbers (details below). Its implementation of the
generator is being tested in this paper. At the end,
this paper concludes whether the numbers generated
by the selected generator follow a desired probability
distribution.

Subsequent subsections introduce the areas of
PRNGs, probability distributions, probability density
functions, and C++.

https://doi.org/10.18421/TEM104-01

TEM Journal. Volume 10, Issue 4, Pages 1495‐1499, ISSN 2217‐8309, DOI: 10.18421/TEM104‐01, November 2021.

1496 TEM Journal – Volume 10 / Number 4 / 2021.

a. Literature overview

The evaluation of the quality of pseudorandom

numbers is a difficult problem which has no unique
solution [2]. Tests may be aimed at the most
fundamental properties. There exists a type of
standardized set of statistical tests (presented in [3]),
such as the uniformity test [4], the serial test [4], the
gap test [5], the maximum t test [3], the collision test
[6], the run test and the park test [7], bit level tests
[8], the spectral test [3] and visual tests. These tests
are well described in the comparative study of many
PRNGs in [9], [10].

Another set of experiments may be performed
using empirical testing (blind statistical tests with
Diehard battery of tests [11], TestU01 library [12])
and NIST statistical test suite [13] and graphical tests
(lattice test and space-time diagram test). Results are
presented in [14].

None of the research mentioned above analysed
the PRNGs using the chi-square test, what is an
opportunity for this paper to fill the gap. This
approach is described in the section of the problem
solution.

b. Pseudorandom Numbers Generator

PRNGs behave efficiently but also

deterministically. Therefore, the numbers generated
by a PRNG are only pseudorandom in contrary to the
true number generators (TRNGs, like it is expected
in lotteries). The functioning of PRNGs’ algorithms
is based on the specific deterministic mathematical
model [15].

There are plenty of PRNGs in the history of
software engineering. Few representatives are
mentioned below [15], [16]:

 LCG,
 Unix Random,
 KnuthB,
 SplitMix,
 Mersenne Twister,
 MRG32k3a,
 Ranlux48,
 MixMax,
 Arc4Random,
 Ran,
 XorWov,
 XorShift.

Further details about the mentioned PRNGs are
written, for instance, in [15].

c. Probability distribution

There is a need of various probability distributions

of generated numbers in various utilizations of

PRNGs. The following continuous probability
distributions may belong to the set of mainly known
and used [17]:

 Uniform distribution,
 Normal distribution (also known as Gaussian

distribution, see Figure 1.),
 Lognormal distribution,
 Student T-distribution.

The normal distribution is probably one of the
most used distributions. In many cases, the
inspiration comes from the nature and natural
behaviour.

Moreover, one of the key characteristics in SI
measurements is jitter. It represents variations in the
data signal. Typically, these variations behave
statistically in nature. Random jitter usually follows a
normal distribution [18].

Classical statistical methods using mean and
standard deviation of a dataset are usually applied to
measurement intercomparisons [19] (assuming the
data in the dataset follow a normal distribution).

Figure 1. Normal distribution: illustration of the
probability density function [18]

d. C++, the selected Programming Language

The reasons for the choice of C++ were the
authors' preference, the efficiency and speed of the
software written in this programming language, and
simple portability between different architectures and
operating systems. C++ is a modern, object-oriented
and performance-oriented programming language
[20].

The name of this language has appeared in 1983
for the first time and despite its age, it is still a
modern and preferred language not only in low-level
highly effective programming. Its current standard
comes from 2017 (usually marked as C++17) and a
fresh C++20 is coming soon [20].

Pseudorandom number generator ranlux48
available in C++ (available since a standard called
C++11) has been selected. This generator
implements all the basic distributions mentioned in
the section of 2.c and much more [21].

TEM Journal. Volume 10, Issue 4, Pages 1495‐1499, ISSN 2217‐8309, DOI: 10.18421/TEM104‐01, November 2021.

TEM Journal – Volume 10 / Number 4 / 2021. 1497

The histogram of a test case with 10,000 numbers
generated by the PRNG of C++ is depicted in Figure
2. The setup of the PRNG was the following:

 normal distribution,
 mean µ = 0.0,
 standard deviation σ = 1.0.

Simplified source code of a program written in
C++ generating pseudorandom numbers which
should follow the normal distribution (µ = 0.0, σ =
1.0) follows in Table 1.

Table 1. Simplified source code

#include <iostream>
#include <random>
#include <time.h>

int main (void) {
 double mean = 0.0;
 double std_dev = 1.0;

 // The desired total count of numbers
 // generated by PRNG
 unsigned total_generated = 100;

 // Counter of iterations
 unsigned iterations = 0;

 // Initialization of the PRNG
 std::ranlux48_base generator(time(0));

 // Configuration of the desired distrib.
 std::normal_distribution<double>
 normal_distrib(mean, std_dev);

 // Getting a set of real numbers from PRNG
 while (iterations < total_generated) {
 std::cout << normal_distrib(generator)
 << std::endl;
 ++iterations;
 }
 return 0;
}

3. Problem Solution

This section presents the way of testing of the

selected PRNG. A statistical evaluation based on the
Pearson's Chi-square goodness of fit test has been
performed. This is just one of many possible
approaches for testing PRNGs. Another approach
like GGRTest or OPERM can be found, for instance,
in [22].

Detailed information about the Chi-square,
experimental setup and results follow. Selected
statistical method primarily leads to a conclusion
about the selected PRNG, whether its generated
numbers follow a desired distribution.

a. Chi-square

The histogram presented in Figure 2. seems to

correspond to the normal distribution (see Figure 1.).
However, this hypothesis should be verified. For this
purpose, the chi-square (χ2) test has been applied to
the pseudorandomly generated data. This test is used
to confirm or reject a null hypothesis. In this case, the
null hypothesis relates to the kind of distribution of
the input data, whether these data follow the normal
distribution. The input data must be transformed into
a histogram of a specified number of sections for the
purpose of further processing.

χ2 can be quantified in the following way [23]:

 𝜒ଶ ൌ෎
ሺைೕିாೕሻమ

ாೕ

௞

௝ୀଵ

 (1)

where k stands for the number of histogram
sections, Ej is the expected count (also known as the
theoretical value) of the j-th section of the histogram,
and Oj is the observed count (also known as the
empirical value) of the j-th section of the histogram.

The empirical (observed) counts are created from
the input data from a selected PRNG (as can be seen
in Figure 2.). In contrary, the theoretical (expected)
counts are precisely computed using mathematical
formulas. In this case, the expected histogram is
prepared exactly by the normal distribution’s
probability density function [24]:

 𝑓ሺ𝑥, µ, 𝜎ଶሻ ൌ
ଵ

ఙ√ଶగ
𝑒ି

ሺೣషµሻమ

మ഑మ (2)

where |x| < ∞, |µ| < ∞ and σ > 0. A normal
distribution is called standard when µ is equal to 0.0
and σ is equal 1.0.

Figure 2. Histogram of 10,000 numbers generated in one
run by selected PRNG (normal distribution, mean: 0.0,

standard deviation: 1.0)

TEM Journal. Volume 10, Issue 4, Pages 1495‐1499, ISSN 2217‐8309, DOI: 10.18421/TEM104‐01, November 2021.

1498 TEM Journal – Volume 10 / Number 4 / 2021.

χ^2 follows the Pearson probability distribution
with n degrees of freedom:

 n = k - r - 1 (3)

where r represents the number of parameters of the
probability density function. The χ2 along with the
number of degrees of freedom is then used to
compute the probability using the Pearson probability
distribution Fp:

 p = Fp (χ
2, n) (4)

The probability p is then compared to the
significance level α (commonly set to 0.05 [25]). If
p > 1 - α, then the tested hypothesis is rejected with
the significance level α [23].

b. Experiment

This subsection describes the experiment of testing

the probability distribution of the selected PRNG.
Working with the observed data generated by the

selected PRNG, the null and the corresponding
alternative hypotheses have been defined in the
following way:

 H0: The observed data from the selected PRNG
are normally distributed.

 HA: The observed data from the selected PRNG
are not normally distributed.

Experimental setup: the following list contains the
description of the experimental setup selected for this
paper:

 The PRNG has been set up to produce numbers
following the normal distribution of desired
configuration.

 Histogram is portioned into k = 20 segments.
 The significance level in this test has been set to

α = 0.05 (common threshold [25]).
 The sum of the empirically counted numbers is

equal to the sum of the generated numbers
assigned to the histogram, what is nearly 100,000
(it is exactly only 99,992, it is not rounded to
thousands due to the nature of the normal
distribution and the fact that the histogram is
segmented into a specific number of segments).

Histograms of the expected data and a test set of
observed data generated by the selected PRNG are
presented in Table 2. Repeating the process of
generation of a new test set of pseudorandom
numbers gives little bit different results all the time,
but the results are usually similar to the following
ones.

Table 2. Histograms of the expected and observed
random data (generated in one run by the selected PRNG)
of standard normal distribution, nearly 100,000 numbers,
20 segments

Interval Expected count Observed count
[-3.60, -3.24] 41 45
[-3.24, -2.88] 133 148
[-2.88, -2.52] 375 392
[-2.52, -2.16] 929 948
[-2.16, -1.80] 2023 2099
[-1.80, -1.44] 3867 3886
[-1.44, -1.08] 6495 6516
[-1.08, -0.72] 9581 9640
[-0.72, -0.36] 12417 12227
[-0.36, 0.00] 14135 14163
[0.00, 0.36] 14135 13953
[0.36, 0.72] 12417 12395
[0.72, 1.08] 9581 9564
[1.08, 1.44] 6495 6553
[1.44, 1.80] 3867 3834
[1.80, 2.16] 2023 2080
[2.16, 2.52] 929 988
[2.52, 2.88] 375 357
[2.88, 3.24] 133 151
[3.24, 3.60] 41 53

Results and discussion: the experiment resulted in
the following numbers:

 n = 17,
 χ2 = 24.961,
 p = 0.929.

Evaluation of these numbers is the following
subsection. H0 is accepted with the significance level
alpha (p ≤ 1 - α, where α = 0.05) with respect to the
results presented above.

This test has been repeated and the hypothesis H0
was accepted in 9 from 10 cases (10 test sets of
pseudorandom numbers). Therefore, the numbers
generated by the selected PRNG follow the normal
distribution.

Further research may aim at the analysis of other
kinds of distributions and generator of pseudorandom
numbers in newer standards of C++ and other
generators.

4. Conclusion

High quality PRNGs generating numbers following

desired probability distributions are fundamental in
many software applications. Therefore, their testing
for quality is important. The work presented in this
paper focused on the statistical testing of the
probability distribution of numbers generated by the
selected PRNG.

The tested distribution in this study was the normal
distribution and the selected PRNG was the built-in
generator available in C++ since the standard of

TEM Journal. Volume 10, Issue 4, Pages 1495‐1499, ISSN 2217‐8309, DOI: 10.18421/TEM104‐01, November 2021.

TEM Journal – Volume 10 / Number 4 / 2021. 1499

C++11. Pearson's Chi-square goodness of fit test was
the statistical method applied in the test.

Results presented in the experiment described
above indicate that the selected PRNG follows the
desired normal distribution. The null hypothesis of
the experiment stated that the observed numbers
generated by the selected PRNG are normally
distributed. This hypothesis has been confirmed.

Acknowledgements

This work has been funded by the project of Applied

informatics in population protection (RVO/FLKR/2020/04,
RVO excelent/MSM) and by Department of Population
Protection of Faculty of Logistics and Crisis Management
at Tomas Bata University in Zlín.

References

[1]. James, F., & Moneta, L. (2020). Review of high-

quality random number generators. Computing and
Software for Big Science, 4(1), 1-12.

[2]. Janke, W. (2002). Pseudo random numbers:
Generation and quality checks. Lecture Notes John
von Neumann Institute for Computing, 10, 447.

[3]. Knuth, D. E. (2014). Art of computer programming,
volume 2: Seminumerical algorithms. Addison-
Wesley Professional.

[4]. L'Ecuyer, P., Simard, R., & Wegenkittl, S. (2002).
Sparse serial tests of uniformity for random number
generators. SIAM Journal on scientific
computing, 24(2), 652-668.

[5]. Jhajharia, S., Mishra, S., & Bali, S. (2013, August).
Public key cryptography using neural networks and
genetic algorithms. In 2013 Sixth International
Conference on Contemporary Computing (IC3) (pp.
137-142). IEEE.

[6]. Capó, E. J. M., Cuellar, O. J., Pérez, C. M. L., &
Gómez, G. S. (2016, October). Evaluation of input—
Output statistical dependence PRNGs by SAC. In
2016 International Conference on Software Process
Improvement (CIMPS) (pp. 1-6). IEEE.

[7]. Min, L., Chen, T., & Zang, H. (2013). Analysis of
fips 140-2 test and chaos-based pseudorandom
number generator. Chaotic Modeling and
Simulation, 2(1), 273-280.

[8]. Inayah, K., Sukmono, B. E., Purwoko, R., &
Indarjani, S. (2013, November). Insertion attack
effects on standard PRNGs ANSI X9. 17 and ANSI
X9. 31 based on statistical distance tests and entropy
difference tests. In 2013 International Conference on
Computer, Control, Informatics and Its Applications
(IC3INA) (pp. 219-224). IEEE.

[9]. Vattulainen, I., Kankaala, K., Saarinen, J., & Ala-
Nissila, T. (1995). A comparative study of some
pseudorandom number generators. Computer Physics
Communications, 86(3), 209-226.

[10]. Vattulainen, I. (1994). New tests of random numbers
for simulations in physical systems. arXiv preprint
cond-mat/9411062.

[11]. Brown, R. G. (2004). Engineering a beowulf-style
compute cluster. Duke University Physics
Department. Retrieved from:
https://webhome.phy.duke.edu/~rgb/General/dieharde
r.php [accessed: 10 June 2021].

[12]. L'ecuyer, P., & Simard, R. (2007). TestU01: AC
library for empirical testing of random number
generators. ACM Transactions on Mathematical
Software (TOMS), 33(4), 1-40.

[13]. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., &
Barker, E. (2001). A statistical test suite for random
and pseudorandom number generators for
cryptographic applications. Booz-allen and hamilton
inc mclean va.

[14]. Bhattacharjee, K., Maity, K., & Das, S. (2018). A
search for good pseudo-random number generators:
Survey and empirical studies. arXiv preprint
arXiv:1811.04035.

[15]. O’Neill, M. E. (2014). PCG: A family of simple fast
space-efficient statistically good algorithms for
random number generation. ACM Transactions on
Mathematical Software.

[16]. Steele Jr, G. L., Lea, D., & Flood, C. H. (2014). Fast
splittable pseudorandom number generators. ACM
SIGPLAN Notices, 49(10), 453-472.

[17]. Castrup, H. (2001, May). Distributions for
uncertainty analysis. In Proc. Int. Dimensional
Workshop (pp. 1-12).

[18]. Bonaguide, G., & Jarvis, N. (2019). The VNA
Applications Handbook. Artech House.

[19]. Judish, R. M., & Splett, J. (1999, May). Robust
statistical analysis of vector network analyzer
intercomparisons. In IMTC/99. Proceedings of the
16th IEEE Instrumentation and Measurement
Technology Conference (Cat. No. 99CH36309) (Vol.
3, pp. 1320-1324). IEEE.

[20]. Stroustrup, B. (2018). A Tour of C++. Addison-
Wesley Professional.

[21]. The C++ Resource Network (2021). <random>. The
C++ Resources Network. Retrieved from:
http://www.cplusplus.com/reference/random/
[accessed: 15 June 2021].

[22]. Lorek, P., Słowik, M., & Zagórski, F. (2017,
November). Statistical Testing of PRNG: Generalized
Gambler’s Ruin Problem. In International
Conference on Mathematical Aspects of Computer
and Information Sciences (pp. 425-437). Springer,
Cham.

[23]. Rao, C. R. (2002). Karl Pearson chi-square test the
dawn of statistical inference. In Goodness-of-fit tests
and model validity (pp. 9-24). Birkhäuser, Boston,
MA.

[24]. Patel, J. K., & Read, C. B. (1996). Handbook of the
normal distribution (Vol. 150). CRC Press.

[25]. Delorme A (2006) Statistical methods. In: Webster
JG (ed) Encyclopedia of medical device and
instrumentation, vol 6. Wiley Interscience, Hoboken,
NJ, USA, pp 240–264.

