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Abstract – High quality pseudorandom number 
generators were needed in many software solutions 
throughout the history of programming. Nowadays, 
these generators play an even more significant role in 
software development. Generally, these generators 
bring a certain level of coincidence in some algorithms 
which need it. This work focuses on the statistical 
evaluation of one of the representatives of the 
generators using Pearson's Chi-square goodness of fit 
test. The generator of pseudorandom numbers under 
test is the specific implementation in the modern 
standard of the programming language of C++ (the 
standard of C++17). Results presented in this paper 
inform whether the numbers generated by the selected 
generator follow the desired probability distribution 
(normal).  

Keywords – chi-square, pseudorandom number 
generator, C++, normal distribution 

1. Introduction

Numbers obtained from pseudorandom generators 
are used in many software solutions. Reasons for the 
usage of these pseudorandom numbers vary from 
implementation of a type of (pseudo) coincidence 
(pseudorandom selection from a set of values, testing 
purposes), utilization in stochastic methods, 
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evolutionary algorithms to approximation of some 
natural behaviour in natural sciences and engineering 
or utilization in sensitivity analyses. Therefore, the 
findings presented in this paper may be relevant in 
the areas of mathematics, computer science 
(including artificial intelligence, software 
development), economy, physics, engineering, and 
natural sciences as well. 

The numbers generated by a pseudorandom 
number generator (PRNG) must usually fulfil some 
criteria. These criteria may be simply represented as 
a set of boundaries of a desired interval (lower and 
upper limits) and the PRNG can be set to a specific 
probability distribution. Further parameters of the 
target probability distribution must be specified in 
such a case. 

Some software applications do not rely on a precise 
randomness or on the probability distribution of the 
generated numbers. However, at least a lower 
fraction does [1]. Therefore, in these applications 
relying on high-quality PRNGs, generators must be 
tested. And this paper focuses on one specific subset 
of the aforesaid group of PRNGs. It focuses on the 
testing of the PRNG of normal distribution available 
in the modern standard of the programming language 
of C++.  

2. Problem Formulation

High quality PRNGs following a desired 
probability distribution are needed in many software 
solutions [1], as mentioned in the abstract and in the 
introduction of this paper. 

C++ is a widely spread programming language 
which includes an implementation of a PRNG with 
variants of probability distributions of the generated 
numbers (details below). Its implementation of the 
generator is being tested in this paper. At the end, 
this paper concludes whether the numbers generated 
by the selected generator follow a desired probability 
distribution. 

Subsequent subsections introduce the areas of 
PRNGs, probability distributions, probability density 
functions, and C++. 
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a. Literature overview 
 
The evaluation of the quality of pseudorandom 

numbers is a difficult problem which has no unique 
solution [2]. Tests may be aimed at the most 
fundamental properties. There exists a type of 
standardized set of statistical tests (presented in [3]), 
such as the uniformity test [4], the serial test [4], the 
gap test [5], the maximum t test [3], the collision test 
[6], the run test and the park test [7], bit level tests 
[8], the spectral test [3] and visual tests. These tests 
are well described in the comparative study of many 
PRNGs in [9], [10]. 

Another set of experiments may be performed 
using empirical testing (blind statistical tests with 
Diehard battery of tests [11], TestU01 library [12]) 
and NIST statistical test suite [13] and graphical tests 
(lattice test and space-time diagram test). Results are 
presented in [14]. 

None of the research mentioned above analysed 
the PRNGs using the chi-square test, what is an 
opportunity for this paper to fill the gap. This 
approach is described in the section of the problem 
solution. 

 
b. Pseudorandom Numbers Generator 

 
PRNGs behave efficiently but also 

deterministically. Therefore, the numbers generated 
by a PRNG are only pseudorandom in contrary to the 
true number generators (TRNGs, like it is expected 
in lotteries). The functioning of PRNGs’ algorithms 
is based on the specific deterministic mathematical 
model [15]. 

There are plenty of PRNGs in the history of 
software engineering. Few representatives are 
mentioned below [15], [16]: 

 

 LCG, 
 Unix Random, 
 KnuthB, 
 SplitMix, 
 Mersenne Twister, 
 MRG32k3a, 
 Ranlux48, 
 MixMax, 
 Arc4Random, 
 Ran, 
 XorWov, 
 XorShift. 

 

Further details about the mentioned PRNGs are 
written, for instance, in [15]. 

 
c. Probability distribution 

 
There is a need of various probability distributions 

of generated numbers in various utilizations of 

PRNGs. The following continuous probability 
distributions may belong to the set of mainly known 
and used [17]: 

 

 Uniform distribution, 
 Normal distribution (also known as Gaussian 

distribution, see Figure 1.), 
 Lognormal distribution, 
 Student T-distribution. 

 

The normal distribution is probably one of the 
most used distributions. In many cases, the 
inspiration comes from the nature and natural 
behaviour. 

Moreover, one of the key characteristics in SI 
measurements is jitter. It represents variations in the 
data signal. Typically, these variations behave 
statistically in nature. Random jitter usually follows a 
normal distribution [18]. 

Classical statistical methods using mean and 
standard deviation of a dataset are usually applied to 
measurement intercomparisons [19] (assuming the 
data in the dataset follow a normal distribution). 

 

 
 

Figure 1.  Normal distribution: illustration of the 
probability density function [18] 

 
d. C++, the selected Programming Language 

 

The reasons for the choice of C++ were the 
authors' preference, the efficiency and speed of the 
software written in this programming language, and 
simple portability between different architectures and 
operating systems. C++ is a modern, object-oriented 
and performance-oriented programming language 
[20].  

The name of this language has appeared in 1983 
for the first time and despite its age, it is still a 
modern and preferred language not only in low-level 
highly effective programming. Its current standard 
comes from 2017 (usually marked as C++17) and a 
fresh C++20 is coming soon [20]. 

Pseudorandom number generator ranlux48 
available in C++ (available since a standard called 
C++11) has been selected. This generator 
implements all the basic distributions mentioned in 
the section of 2.c and much more [21]. 
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The histogram of a test case with 10,000 numbers 
generated by the PRNG of C++ is depicted in Figure 
2. The setup of the PRNG was the following: 

 

 normal distribution, 
 mean µ = 0.0, 
 standard deviation σ = 1.0. 

 

Simplified source code of a program written in 
C++ generating pseudorandom numbers which 
should follow the normal distribution (µ = 0.0, σ = 
1.0) follows in Table 1. 

 
Table 1.  Simplified source code 

 

#include <iostream> 
#include <random> 
#include <time.h> 
 
int main (void) { 
  double mean = 0.0; 
  double std_dev = 1.0; 
   
  // The desired total count of numbers 
  // generated by PRNG 
  unsigned total_generated = 100; 
   
  // Counter of iterations 
  unsigned iterations = 0; 
   
  // Initialization of the PRNG 
  std::ranlux48_base generator(time(0)); 
   
  // Configuration of the desired distrib. 
  std::normal_distribution<double>  
    normal_distrib(mean, std_dev); 
   
  // Getting a set of real numbers from PRNG 
  while (iterations < total_generated) { 
    std::cout << normal_distrib(generator) 
       << std::endl; 
    ++iterations; 
  } 
  return 0; 
} 

 
3. Problem Solution 

 
This section presents the way of testing of the 

selected PRNG. A statistical evaluation based on the 
Pearson's Chi-square goodness of fit test has been 
performed. This is just one of many possible 
approaches for testing PRNGs. Another approach 
like GGRTest or OPERM can be found, for instance, 
in [22]. 

Detailed information about the Chi-square, 
experimental setup and results follow. Selected 
statistical method primarily leads to a conclusion 
about the selected PRNG, whether its generated 
numbers follow a desired distribution. 

 

a. Chi-square 
 
The histogram presented in Figure 2. seems to 

correspond to the normal distribution (see Figure 1.). 
However, this hypothesis should be verified. For this 
purpose, the chi-square (χ2) test has been applied to 
the pseudorandomly generated data. This test is used 
to confirm or reject a null hypothesis. In this case, the 
null hypothesis relates to the kind of distribution of 
the input data, whether these data follow the normal 
distribution. The input data must be transformed into 
a histogram of a specified number of sections for the 
purpose of further processing.  

χ2 can be quantified in the following way [23]: 
 

  𝜒ଶ ൌ෎
ሺைೕିாೕሻమ

ாೕ

௞

௝ୀଵ

  (1) 

 

where k stands for the number of histogram 
sections, Ej is the expected count (also known as the 
theoretical value) of the j-th section of the histogram, 
and Oj is the observed count (also known as the 
empirical value) of the j-th section of the histogram. 

The empirical (observed) counts are created from 
the input data from a selected PRNG (as can be seen 
in Figure 2.). In contrary, the theoretical (expected) 
counts are precisely computed using mathematical 
formulas. In this case, the expected histogram is 
prepared exactly by the normal distribution’s 
probability density function [24]: 
 

  𝑓ሺ𝑥, µ, 𝜎ଶሻ ൌ
ଵ

ఙ√ଶగ
𝑒ି

ሺೣషµሻమ

మ഑మ  (2) 
 

where |x| < ∞, |µ| < ∞ and σ > 0. A normal 
distribution is called standard when µ is equal to 0.0 
and σ is equal 1.0. 

 

 
 

Figure 2.  Histogram of 10,000 numbers generated in one 
run by selected PRNG (normal distribution, mean: 0.0, 

standard deviation: 1.0) 
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χ^2 follows the Pearson probability distribution 
with n degrees of freedom: 

 

  n = k - r - 1   (3) 
 

where r represents the number of parameters of the 
probability density function. The χ2 along with the 
number of degrees of freedom is then used to 
compute the probability using the Pearson probability 
distribution Fp: 

 

  p = Fp (χ
2, n)   (4) 

 

The probability p is then compared to the 
significance level α (commonly set to 0.05 [25]). If 
p > 1 - α, then the tested hypothesis is rejected with 
the significance level α [23]. 

 
b. Experiment 

 
This subsection describes the experiment of testing 

the probability distribution of the selected PRNG. 
Working with the observed data generated by the 

selected PRNG, the null and the corresponding 
alternative hypotheses have been defined in the 
following way: 

 

 H0: The observed data from the selected PRNG 
are normally distributed. 

 HA: The observed data from the selected PRNG 
are not normally distributed. 

 

Experimental setup: the following list contains the 
description of the experimental setup selected for this 
paper: 

 

 The PRNG has been set up to produce numbers 
following the normal distribution of desired 
configuration. 

 Histogram is portioned into k = 20 segments. 
 The significance level in this test has been set to 

α = 0.05 (common threshold [25]). 
 The sum of the empirically counted numbers is 

equal to the sum of the generated numbers 
assigned to the histogram, what is nearly 100,000 
(it is exactly only 99,992, it is not rounded to 
thousands due to the nature of the normal 
distribution and the fact that the histogram is 
segmented into a specific number of segments). 

 

Histograms of the expected data and a test set of 
observed data generated by the selected PRNG are 
presented in Table 2. Repeating the process of 
generation of a new test set of pseudorandom 
numbers gives little bit different results all the time, 
but the results are usually similar to the following 
ones. 

 
 
 
 
 

Table 2.  Histograms of the expected and observed 
random data (generated in one run by the selected PRNG) 
of standard normal distribution, nearly 100,000 numbers, 
20 segments 

 

Interval Expected count Observed count 
[-3.60, -3.24] 41 45 
[-3.24, -2.88] 133 148 
[-2.88, -2.52] 375 392 
[-2.52, -2.16] 929 948 
[-2.16, -1.80] 2023 2099 
[-1.80, -1.44] 3867 3886 
[-1.44, -1.08] 6495 6516 
[-1.08, -0.72] 9581 9640 
[-0.72, -0.36] 12417 12227 
[-0.36, 0.00] 14135 14163 
[0.00, 0.36] 14135 13953 
[0.36, 0.72] 12417 12395 
[0.72, 1.08] 9581 9564 
[1.08, 1.44] 6495 6553 
[1.44, 1.80] 3867 3834 
[1.80, 2.16] 2023 2080 
[2.16, 2.52] 929 988 
[2.52, 2.88] 375 357 
[2.88, 3.24] 133 151 
[3.24, 3.60] 41 53 

 

Results and discussion: the experiment resulted in 
the following numbers: 

 

 n = 17, 
 χ2 = 24.961, 
 p = 0.929. 

 

Evaluation of these numbers is the following 
subsection. H0 is accepted with the significance level 
alpha (p ≤ 1 - α, where α = 0.05) with respect to the 
results presented above. 

This test has been repeated and the hypothesis H0 
was accepted in 9 from 10 cases (10 test sets of 
pseudorandom numbers). Therefore, the numbers 
generated by the selected PRNG follow the normal 
distribution. 

Further research may aim at the analysis of other 
kinds of distributions and generator of pseudorandom 
numbers in newer standards of C++ and other 
generators. 

 
4. Conclusion 

 
High quality PRNGs generating numbers following 

desired probability distributions are fundamental in 
many software applications. Therefore, their testing 
for quality is important. The work presented in this 
paper focused on the statistical testing of the 
probability distribution of numbers generated by the 
selected PRNG. 

The tested distribution in this study was the normal 
distribution and the selected PRNG was the built-in 
generator available in C++ since the standard of 
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C++11. Pearson's Chi-square goodness of fit test was 
the statistical method applied in the test. 

Results presented in the experiment described 
above indicate that the selected PRNG follows the 
desired normal distribution. The null hypothesis of 
the experiment stated that the observed numbers 
generated by the selected PRNG are normally 
distributed. This hypothesis has been confirmed. 
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