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Abstract. The objective of this contribution is twofold. First, it demonstrates a 
case study on applying the standard single-run relay-feedback parameter identi-
fication test to a representative of infinite-dimensional systems. Namely, a de-
layed mathematical model of a circuit heating laboratory appliance process is 
used. Second, an initial estimation of the model parameters is done via the pa-
rameter identification of another – simpler – model. The transition between these 
two models adopts the idea of dominant spectrum assignment that is solved by 
using the well-established Levenberg-Marquardt algorithm. Finally, the remain-
ing model parameters are estimated by solving another nonlinear optimization 
problem in the frequency domains. As transfer function denominator parameters 
are set independently to the numerator ones, the proposed technique significantly 
reduces the number of additional relay experiments. Numerical results indicate 
that the method needs improvements regarding time-response as well as fre-
quency-response accuracy. 

Keywords: Relay-based identification, Infinite-dimensional model, Initial esti-
mation, Pole assignment, Levenberg-Marquardt algorithm. 

1 Introduction 

One of the very popular frameworks for process model parameters identification is 
based on the closed-loop experiment with a relay placed instead of the controller [1]. It 
was implemented in practice, especially in (but not limited to) the process and chemical 
industry [2]. This original test used the on/off (or ideal) relay with two-level symmet-
rical output without hysteresis. As the experiment output, one (ultimate) point of the 
process model frequency response is estimated via the so-called describing function 
(DF), which gives rise to the determination of only two unknown parameters. Hence, 
dozens of enhanced techniques and methods have been developed [3] since the ground-
breaking work. For instance, time-domain [4] and frequency-domain [5] data evalua-
tion have been investigated, various relay types have been applied [6, 7], multiple tests 
have enabled to provide more information about the process dynamics [8], or even these 
extended data have been extracted from the single test [9]. 
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Infinite-dimensional models (IDMs) are characterized by the infinite number of im-
pulse-response modes, or equivalently, by the infinite number of state-matrix eigenval-
ues that correspond to the solution of the characteristic function. Let us call these ei-
genvalues poles for simplicity. IDMs can inherently describe dynamics of complex 
high-order processes, even if the model dynamics is of a low order (measured by order 
of derivatives). Time-delay models (TDMs) constitute typical representatives of the 
IDMs family [10]. They comprise delays in dynamics (i.e., the so-called internal delay) 
besides the habitual delay in the input-output (IO) relation. Unfortunately, according to 
the authors’ best knowledge, there have been published only a limited number of results 
on relay-based identification of TDMs. A simple four-parameter model (SFPM) was 
identified using the standard relay and a priori knowledge of the IO delay [11]. The 
Fourier transform and a relay with saturation [7] were applied in [12] to identify pa-
rameters of a five-parameter TDM representing a simplified model of a circuit heating 
laboratory process. However, a more precise heating process model (HPM) based on 
the use of heat and mass balance equations included nine parameters [13] (in a selected 
single-input single-output relation). The method of moments applied to the series of the 
SFPM and a high-order finite-dimensional non-periodic subsystem can be found in 
[14]. 

Although the SFPM is assumed to be a “universal” model, it cannot estimate a com-
plex system dynamics. However, one can take it as the first-attempt approach to mod-
eling processes with unknown dynamics. Its advantage is all of its four parameters can 
be detected under a single relay experiment. Two parameters can be obtained from the 
ultimate cycle data and the corresponding DF, while two remaining ones can be read 
from the shape of the limit cycles and its numerical integration (or from the process 
step response). Contrariwise, the HPM or another multi-parameter TDM requires either 
a multiple relay test (which is time-consumptive) or to solve a computationally demand-
ing nonlinear optimization problem that usually arises from an advanced single-relay 
test. 

This contribution is primarily focused on applying the standard relay test to the nine-
parameter HPM under a single run. This goal can be achieved via a priori performance 
of identifying the SFPM, the dynamics of which is given by its poles. These poles are 
then attempted to be identical to the poles of the HPM, which yields the initial guess of 
the characteristic function parameters. To solve this partial task, the Levenberg-Mar-
quardt algorithm (LMA) is used. By adopting the IO delay value estimation technique 
and the computation of the steady state from the relay test, there are only two remaining 
HPM parameters that do not depend on model poles. Hence, these remaining parame-
ters are then estimated via the standard test using the knowledge of the DF. This last 
task can be formulated using a relatively simple nonlinear problem in the frequency 
domain. 

The rest of the paper is organized as follows. Section 2 introduces the problem in 
question in more detail and provides the reader with the HPM and the standard relay 
identification test via the DF. In Section 3, the SFPM and its basic spectral properties 
are given first. Then, the LMA – as the crucial numerical tool – is described. The pro-
posed method for the identification of the HPM using the SFPM and the DF is eventu-
ally summarized, and its algorithm is provided. A numerical example that performs all 
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the steps of the proposed method is presented in Section 4. A comparison of the actual 
and estimated HPM is given in the time domain and the frequency domain. Finally, 
section 5 concludes this study. 

2 Problem Statement 

The framework problem is to apply the standard feedback relay identification test on 
the nine-parameter HPM under a single run. The estimation of the characteristic qua-
sipolynomial parameters constitutes a particular research question that serves to solve 
the given problem. The characteristic function solutions are simply the characteristic 
quasipolynomial zeros, i.e., system poles. This initial guess enables to determine the 
remaining HPM parameters with a lower effort. Hence, the introduction of HPM and 
the standard relay [1] test follows. 

 
2.1 Infinite-Dimensional Model of the Thermal Process 

The HPM, i.e., a TDM of the laboratory circuit heating process, derived via heat and 
mass balance laws when considering all the significant process delays, have been pub-
lished in [13]. A photo of the laboratory appliance is displayed in Fig. 1. The meaning 
of numbered positions follows. 

 

Fig. 1. A photo of the laboratory circuit heating appliance (numbered positions are described in 
the text body). 

The distilled water is driven via a continuously controllable pump {1} through a flow 
heater {2} to a long insulated coiled pipeline {3}. Then, the heating fluid enters a cooler 
(air-water plate-and-fin heat exchanger, radiator) {4} with two cooling fans and flows 
back to the pump. An expansion tank serving for the compensation of the water thermal 
expansion effect is placed at the top of the appliance {5}. 
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The manipulated inputs (or measurable disturbances if needed) are the pump input 
voltage, the heater power, and the input voltage to cooler fans. The outputs are repre-
sented by measured outlet temperature from the heater, inlet temperature to the cooler, 
and the outlet temperature from the cooler. 

The eventual model is quite complex, nonlinear, and multivariable. Let us consider 
the single-input single-output submodel where the heater power is taken as the model 
input ( )u t , while the outlet temperature from the heater represents the output ( )y t . 

The linearized relation between ( )u t  and ( )y t  (in a particular operating point) can be 

expressed by the delay-differential equation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 0 0 0 0 0D Dy t a y t a y t a y t a y t b u t b u tϑ τ τ τ+ + + + − = − + − −ɺɺɺ ɺɺ ɺ  (1) 

where 0 0 1 2 0 0, , , , ,D Da a a a b b  are real-valued non-delay parameters, 0, ,ϑ τ τ  mean the in-

ternal (state) delay and delays in the IO relation, respectively, and the dot notation is 
used for the time derivative. Delay values are naturally non-negative. 

Relation (1) is equivalent to the transfer function 
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where s  is the Laplace transform variable and the denominator quasipolynomial of (2) 
represents the characteristic quasipolynomial, the roots of which agree with system 
poles (characteristic values). The number of poles is infinite (i.e., the model is infinite-
dimensional) whenever 0ϑ ≠ . 

A complex two-step parameter identification procedure have been made in [13]. 
First, non-dynamic parameters have been determined from the measurement of suitable 
static characteristics. Second, remaining parameters depended on the system dynamics 
have been identified from step responses. The eventual parameters of (2) have been 
found as follows. 

 

7 6 4 5 3
0 0 0 0 1

2 0

2.50 10 , 2.27 10 , 1.30 10 , 7.22 10 , 8.51 10 ,

0.17, 141, 1.5, 151
D Db b a a a

a τ τ ϑ

− − − − −= − ⋅ = ⋅ = ⋅ = − ⋅ = ⋅
= = = =

 (3) 

Let us take result (3) are the actual (“true”) values for further comparisons. 
 
2.2 Relay-Based Identification Using Describing Function  

The relay identification test [1] s the feedback scheme depicted in Fig. 2. If the process 
is stabilizable by the nonlinear element (relay), the initially excited output reaches sus-
tained oscillations of the constant ultimate amplitude A  and period uT , see Fig. 3 (ac-

cording to [12]). Process input has the same period yet a different amplitude B . The 
overall phase lag between ( )e t  and ( )y t  is π− ; however, the phase leg between ( )u t  

and ( )y t  can be within the range [ ),0π−  (depending on the used relay element). 
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Fig. 2. Relay feedback test scheme. 

 

Fig. 3. Sustained oscillations data. 

The static characteristics of the asymmetric on/off relay (without hysteresis) can be 

seen in Fig. 4. The ideal relay satisfies B B B
+ −= = . 

 

Fig. 4. Asymmetric relay static characteristics [12]. 

The concept of DF utilizes an approximation of the nonlinear relay behavior, usually 
via truncation of the Fourier series expansion [15]. The DF of the relay specified by 
Fig. 4 has the form [16]: 
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where 0.5 B Bδ + −= − . Hence, for the ideal relay, one has 0δ = . It holds for the sus-

tained oscillations that 

 ( ) ( )
( )( )
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u u
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 == − ⇔ 
= −∡
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where the ultimate frequency 2 /u uTω π= , ( )jG ω  stands for the process (model) fre-

quency transfer function, and 2j 1= − , which identifies the critical point -1 of the open-

loop Nyquist plot. 
Formula (5) can identify only two process-model parameters. However, the IO delay 

τ  can be obtained graphically from Fig. 4. Besides, the model static gain ( )0k G=  

can be computed from 
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when using the asymmetric relay (i.e., 0δ ≠ ), for a sufficiently high t  when the oscil-
lations are settled [7, 11]. It is assumed that the measured signal is not affected by dc 
components, such as static load disturbance. Note that the value of k  can also be simply 
determined from the step response. 

To sum up the problem in question, the goal is to use the ideal relay (4) to identify 
parameters of model (2) via the solution of the condition (5) under a single feedback 
experiment. Besides, the static gain and the IO delay are estimated using (5) and Fig. 
4, respectively. Hence, there remain five parameters to be determined in the model, 
which gives rise to the main research question.  

3 Proposed Technique 

3.1 Simple Infinite-Dimensional Model 

The leading idea of how to solve the given research question is to identify a simpler 
TDM (i.e., the SFPM) and then adopt its dynamics (spectrum) to the HPM (2). The 
SFPM is governed by the transfer function 

 ( ) 0,

0 ,

e
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m

m

m s

SFPM s

D m

b
G s

s a

τ
ϑ

−
−=

+
 (7) 

As the static gain of (7) (i.e., 0, 0 ,/m m D mk b a= ) and mτ  can be obtained as described 

in subsection 2.2, the remaining two parameters can be determined by the single relay 
test. When applying (5) on model (7), one gets [11]: 
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Remark 1. A disadvantage of the analytic solution (8) is that it inherently supposes that 
( ) [ ]cos 1,1u m u mk k ω τ ∈ − . If this condition does not hold, formulae (8) cannot be used, 

and a numerical solution of (5) has to be used instead. 
The model is asymptotically stable, i.e., its denominator has all its roots in the left-

half Gauss plane, if and only if 0 ,0 / 2
D m m

a ϑ π< < . Moreover, the rightmost pole is 

real whenever 0 ,0 1/ e
D m m

a ϑ< ≤ . Otherwise, there is a complex conjugate pair of poles 

[8, 11, 17].  
 

3.2 Levenberg-Marquardt Algorithm 

The LMA can solve a set of n  nonlinear algebraic equations by minimizing the corre-
sponding residual sum of squares [18]. Namely, let the set be 

 ( ),ix =f p 0  (9) 

where ( ) ( )1 2, , , 0,0, 0
T T

nf f f= =f 0… … , ix  is a function variable value, and m∈p R  

stands the parameter set to be found. Superscript T  denotes the matrix transpose. Then, 
the sum 

 ( )( )2

1
,

n

j ij
f x

=∑ p  (10) 

is minimized via the solution formula 

( ) ( ) ( )( )( ) ( )( )( ) ( ) ( )( )( ) ( )( )
1

1 , , , ,
T T

k k k k k k k

i i i ix x x xλ
−

+     = − +        
p p J f p J f p I J f p f p  

  (11) 

where the superscript ( )k  indicates the iterative step, J  stands for the Jacobian with 

respect to p , and I  is the identity matrix of size m m× . Factor λ  is decreased when 

(10) decreases, and vice versa.  
The algorithm is used twice in this study. First, it serves for the computational setting 

of denominator parameters of (2) such that dominant poles of (7) coincide with those 
of (2). Second, once the parameters of the characteristic quasipolynomial are set, nu-
merator parameters of (2) are estimated via the solution of (5). Note that the initial 

setting of ( )0
p  is discussed in subsections 4.2 and 4.3. 

 



8 

3.3 Technique Summary 

All steps of the proposed technique for single-run parameter identification of the HPM 
(or, generally, a multiple-parameter TDM) can be summarized by the following algo-
rithm. 

Algorithm 1. (Single-run relay identification test for the HPM using dominant pole 
placement based on the SFPM) 

 
Input: HPM, SFPM with undetermined parameters 
Output: Parameters estimation of the HPM. 

1: Set 0 1δ< ≪ , 0B > , and perform the feedback relay experiment as in Fig. 2 
until sustained oscillations appear. Read ,uT A . 

2: Calculate uω , uk  (4), and mk k=  (6). Estimate mτ τ=  (Fig. 3). 

3: Substitute 0, 0 ,m D m mb a k=  in (7) and solve (5) for SFPMG  (7) using (8) => 0 , ,D m ma ϑ .  

4: If 0 , ,D m ma ϑ ∉R , reset 0 , ,D m ma ϑ  and go to step 5; else, go to step 7. 

5: Set ( )0λ  and the initial denominator parameters of (7). 
6: Use the LMA (11) to solve (5) for SFPMG  (2) => 0 , ,D m ma ϑ . 

7: Set ( )0λ  and the initial denominator parameters of (2). 
8: Use the LMA (11) to set poles of (2) identical to those of (7) => 2 1 0 0, , , ,Da a a a ϑ . 

9: Substitute ( )0 0 0 0D Db a a k b= + −  in (2). 

10: Set ( )0λ  and the initial numerator parameters 0 0,Db τ of (2). 

11: Use the LMA (11) to solve (5) for HPMG  (2) => 0 0 0, ,Db b τ . 

 
A numerical example demonstrating all the algorithm steps follows. 

4 Numerical Results 

Consider model (2)-(3) as the exact heat-process model for this example purposes. The 
example provides the reader with particular numerical results of Algorithm 1. 

 
4.1 Simple Model Parameter Identification 

Let 0.05δ = , 100B =  (note that practical issues of this setting are concisely discussed 
in subsection 4.4). The relay-feedback test yields the sustained oscillations with the 

following ultimate data: 0.963, 363.4suA T= = , i.e., 21.73 10uω −= ⋅ rad/s. Then, 

132.04uk =  according to (4). It can be estimated from Fig. 2 that 136.5smτ τ= ≈  and 

the computation of (6) gives 2
0 , 0 ,/ 3.23 10m D m D mk k b a

−= = = ⋅ . 
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The attempt to calculate (8) results in ( )cos 3.013u m u mk k ω τ = − , which (unfortu-

nately) unable to get real-valued SFPM parameters, see Remark 1. Therefore, the LMA 
is used to determine 0 , ,D m ma ϑ . 

Let ( )0 1λ =  and the initial parameters’ estimation be 2
0 , 1.73 10D m ua ω −= = ⋅ , 

0 ,0.25 / 45.43m D maϑ π= = . It comes from the assumption that 0 ,1/ D ma  is close to the 

process (natural) time constant (for the delay-free system), and the selected value of 

mϑ  means the “center of stability region”. Factor λ  is multiplied or divided by 5 in 

every single iteration step, according to the change of the residual sum (10). The use of 
the LMA then results in  

 
3

0 , 4.776 10 , 6.828sD m ma ϑ−= ⋅ =  (12) 

and (10) for the nonlinear equation set (5) (with ( ) ( )SFPMG s G s= ) eventually has the 

error value of 0.2392. 
 

4.2 Thermal Process Model Characteristic Quasipolynomial Estimation 

The SFPM rightmost poles read 

 
1 2 3,4

5,6 7,8

0.00494, 0.73822, 0.82529 1.05290j,

0.89818  2.00889j, 0.94808  2.94507j

s s s

s s

= − = − = − ±

= − ± = − ±
 (13) 

The leftmost two real poles and the first conjugate pair are set as poles of (2) by solving 
the set of equations ( ) 0, 1, 2iA s i= = , and ( ) ( )3 3Re Im 0A s A s= = , where ( )A s  is 

the denominator (i.e., the characteristic quasipolynomial) of (2). The set is solved by 
the LMA again. 

By comparing denominators of (2) and (7), the ideal setting reads 

2 0 1 0 1 0 ,0, , ,D D m ma a a a a a ϑ ϑ= → → ∞ → ⋅ =  or 0 2 1 0 0 ,0, / ,D D ma a a a a= → →

0 ,D ma ϑ ϑ→ ∞ = , which is, however, non-feasible. Among various other initial set-

tings, two interesting results with a low minimum of (10) have been obtained 

 
2 1 0 0

2 2
2 1 0 0

1: 65.495, 2093.747, 6.854, 10, 6.797

2: 0.3363, 0.9625, 2.386 10 , 2.267 10 , 8.146

D

D

a a a a

a a a a

ϑ
ϑ− −

= = = − = =

= = = ⋅ = ⋅ =
 (14) 

for initial settings 2 1 0 , 0 05, 10/ , 5, 10,D m D ma a a a a ϑ ϑ= = = = =  and 

2 1 0 00.1, 0.1, 0.1, 0.1,D ma a a a ϑ ϑ= = = = = , respectively. Let data vector 1 in (14) be 

denoted as the denominator of the HPM 1, while the latter parameters set in (14) be that 
of the HPM 2. 

Poles of the HPM 1 are almost identical to (13), while those of the HPM 2 read 
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1 2 3,4 5,60.00494, 0.73822, 0.16760 0.96169j, 0.82529  1.0529js s s s= − = − = − ± = − ±  

  (15) 

As can be seen, especially the real part of 3,4s  and the imaginary part of 5,6s  are pretty 

far from the required roots (13); however, the HPM 2 provides interesting time and 
frequency responses (see subsection 4.4). 

 
4.3 Remaining Thermal Process Model Parameter Identification 

The remaining parameters of HPM 1 and HPM 2, i.e., 0, 0 0,Db b τ , can be obtained from 

the substitution according to step 9 of Algorithm 1 and estimated from the relay test 
data again. 

The initial setting follows the idea that 0Db b=  and 0τ  is “a small positive number”. 

Hence, since ( )0 0 0 0D Db b a a k+ = + , we do let set ( )0 0 00.5D Db a a k= +  and 0 0.1τ =
. Then, the LMA with the identical control parameters set to that in the preceding sub-
section is applied to solve (5) with ( ) ( )HPMG s G s= . The eventual results for HPM 1 

and HPM 2 are, respectively 

 
0 0 0

4
0 0 0

1: 0.1728, 0.1530, 1027.311

2: 7.420, -7.419, 4.95 10

D

D

b b

b b

τ
τ −

= = =

= = = ⋅
 (16) 

The corresponding residual errors (10) for the HPM 1 are 0.2970 and 6.1736, where 
the former value holds for the identity of real and imaginary parts in (5), while the latter 
holds for the identity of the gain and the phase. The errors for the HPM 2 are 0.2998 
and 6.1717, respectively. 

 
4.4 Results Evaluation 

Let us display step responses and frequency responses (namely, Nyquist plots) of the 
original (exact) process model and the eventual models SFPM, HPM 1, and HPM 2. 
The time-domain responses are provided to the reader in Fig. 5. Note that the input step 
change is 100u∆ = W and the output data unit is °C. The HPM 1 and HPM 2 responses 
include non-smooth and high-oscillatory sections, respectively; see details in Fig. 6. 

Errors of time-domain responses measured by the Integral Absolute Error (IAE) and 
the Integral Time Absolute Error (ITAE) from the original response are given in Table 
1. As can be seen, the HPM 1 offers the best response in the time domain. However, 
the non-smooth section indicates high-frequency modes in the model dynamics. 

Nyquist plots are displayed in Fig. 7. Note that the frequency range is selected as 

[ ]0,0.1ω ∈ rad/s. The corresponding errors measured by the Root Mean Squares 

(RMS) and the 2-norm of the differences from the original data are given in Table 2. 
These results require a detailed analysis. 
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Fig. 5. Step responses of the original process, the SFPM, HPM 1, and HPM 2. 

 

 

Fig. 6. Selected detail views on HPM 1 (left) and HPM 2 (right) time responses. 

 

Table 1. Error measures of step responses. 

Model IAE ITAE 

SFPM 248.707 1.533·105 

HPM 1 164.270 9.030·104 

HPM 2 185.553 9.380·104 
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Fig. 7. Nyquist plots of the original process, the SFPM, HPM 1, and HPM 2. 

 

Table 2. Error measures of Nyquist plots. 

Model RMS 2-norm 

SFPM 2.641·10-2 0.118 

HPM 1 4.416·10-2 0.198 

HPM 2 4.218·10-2 0.189 

 
By comparing data in Fig. 7 and Table 2, it is surprising that the HPM 2 has worse 
performance than the SFPM as the course of its Nyquist plot is closer to that of the 
original model. The justification arises from a frequency warping of the HPM 2 so that 
the corresponding points in Fig. 7 (for a particular frequency value) are farther from the 
original data than those of the SFPM. The same holds for the HPM 1, where – in addi-
tion – an extraordinary shape appears. Its gain and phase vary fast so that these func-
tions are not monotonous and oscillate. However, the course of its Nyquist plot envel-
ops that of the SFPM. 

Another exciting issue is positions of ( )Re j uG ω  and ( )Im j uG ω  (recall that 
21.73 10uω −= ⋅ ). From the relay test, the theoretical values read 

( )Re j 1 / 0.0076u uG kω = − = − , ( )Im j 0uG ω =  (denoted by the square in Fig. 7). 
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This position almost coincides with ( ) ( ) 5Re j , Im j 0.0077,9.88 10u uG Gω ω −   = − ⋅     

for the HPM 1 (a circle symbol). However, this is not the true critical (ultimate) point. 

The same Nyquist plot position is already reached for 20.86 10uω −= ⋅ . Moreover, the 

point for which every change of ( )Re jG ω  implies the transition from stability to in-

stability (and vice versa) of the feedback loop (i.e., the crossing of -1 for the open-loop 
frequency response) agrees with the leftmost crossing point of the real axis. This true 

critical point is denoted by the cross symbol and appears at 21.27 10ω −= ⋅ . Note that 

( ) ( )Re j , Im ju uG Gω ω    for the original model, the SFPM, and the HPM 2 are

40.0085,6.91 10− − ⋅  , [ ]0.0070,0.0044− , [ ]0.0096,0.0012− , respectively (circles). 

To sum up, both the HPMs yield better performance than the SFPM in the time do-
main, while the opposite result holds in the frequency domain. The poor results for 
HPMs are given mainly by the hybrid nature of Algorithm 1. That is, the pole assign-
ment attempts to get the HPM as close to the SFPM as possible. However, the subse-
quent LMA optimization is designed to utilize relay-feedback test data to the HPM. 
Hence, the eventual HPMs represent a trade-off between the original process dynamics 
(i.e., its ultimate frequency data) and the already obtained SFPM.   

Finally, let us make a concise note on the practical implementation. The used relay 
has no hysteresis. However, it is better to set a nonzero dead-zone of the relay static 
characteristics due to signal noise. We also use a single asymmetric test. It is suitable 
for the estimation of the process static gain, yet it causes an error in the ultimate data 
determination. Therefore, it is better to use a double test under one experiment. First, 
to apply an asymmetry, then to use the ideal relay for more precise ultimate data.  

5 Conclusion 

An approach to a single-run relay-feedback identification experiment for time-delay 
models with multiple parameters has been proposed. The method has been based on 
using a simple model, the parameters of which are estimated first using the standard 
relay experiment. Then, the eventual dominant simple-model poles have been assigned 
to the pole loci of the complex infinite-dimensional model of a thermal circuit process. 
Finally, the remaining parameters of the thermal process model have been determined 
from the known ultimate data of the original relay experiment. The well-established 
Levenberg-Marquardt algorithm has been used to solve the particular sets of nonlinear 
algebraic equations arising in some steps of the algorithm. 

The obtained numerical results yield a necessity to enhance the algorithm regarding 
eventual parameters’ estimation since the step responses and Nyquist plots of the mod-
els have revealed some unpleasant properties. A multiple relay test (yet with a reduced 
number of requisite experiments) or more powerful (yet more complex) numerical tools 
for the solution of given equations have to be used in the future. 
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