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This paper presents a novel method for visualizing the dynamics of evo-
lutionary algorithms in  the  form of  complex networks.  We discuss  the
analogy between individuals in populations in an arbitrary evolutionary
algorithm and vertices of a complex network, as well as between edges
in  a  complex  network  and  communication  between  individuals  in  a
population.  The  possibility  of  visualizing  the  dynamics  of  a  complex
network  using  the  coupled  map  lattices  method  and  control  by  means
of chaos control techniques are also discussed.

1. Introduction

In  this  paper,  we  try  to  merge  two  completely  different  (at  first
glance)  areas  of  research:  complex  networks  (CNs)  and  evolutionary
algorithms  (EAs).  Large-scale  networks,  exhibiting  complex  patterns
of interaction amongst vertices, exist in both natural and artificial sys-
tems  (e.g.,  communication  networks,  genetic  pathways,  ecological  or
economical  networks,  social  networks,  networks  of  various  scientific
collaboration,  the  internet,  World  Wide  Web,  power  grid,  and  oth-
ers). The structure of CNs can be observed in many systems. The term
“complex  networks”  [1,  2]  comes  from the  fact  that  these  networks
exhibit  substantial  and  nontrivial  topological  features,  with  patterns
of  connection  between  vertices  that  are  neither  purely  regular  nor
purely random. Such features include a heavy tail in the degree distri-
bution,  a  high  clustering  coefficient,  and  hierarchical  structure,
amongst  others.  In  the  case  of  directed  networks,  these  features  also
include  reciprocity,  triad  significance  profile,  and  more.  CNs  are  an-
other  field  of  research that  can be  linked with  EAs.  A special  case  is
social networking, which is a complex, large, and expanding sector of
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the information economy. Researchers’ interest in this field is growing
rapidly.  It  has  been  studied  extensively  since  the  beginning  of  the
twentieth century. The first normative contributions in this area were
proposed in the 1940s by sociologist M. Granovetter and mathemati-
cian L.  C.  Freeman.  The basic  theory,  “The Strength of  Weak Ties,”
was  mentioned  in  1973  [3].  Granovetter  argued  that  within  a  social
network, weak ties are more powerful than strong ties. Another signif-
icant  principle  was  published  in  1979  by  L.  C.  Freeman  [4].  This
work presented the  definition of  centrality,  which is  one  node’s  rela-
tionship  to  other  nodes  in  the  network.  Freeman  defined  such  basic
metrics  as  degree,  control,  and independence that  present  researchers
now use. Social network researchers have acquired data for their stud-
ies  using  various  methods.  In  the  past,  these  studies  were  only  based
on questionnaire  data,  which typically  reached hundreds of  individu-
als  [5].  In  the  late  1990s,  new  technologies  such  as  the  internet  and
cellular  phones  enabled  researchers  to  construct  large-scale  networks
using emails [6], phone records [7], or web search engines [8].

Amongst  many  studies,  two  well-known  classes  of  CNs  are  the
scale-free  and  small-world  networks,  whose  discovery  and  definition
are  vitally  important  in  the  scope  of  this  research.  Specific  structural
features  can be observed in  both classes,  that  is,  so-called power-law
degree distributions for the scale-free networks and short path lengths
with  high  clustering  for  the  small-world  networks.  Research  in  the
field  of  CNs  has  joined  together  researchers  from  many  areas  previ-
ously  outside  of  this  interdisciplinary  research  such  as  mathematics,
physics, biology, chemistry, computer science, and epidemiology.

Evolutionary  computation  is  a  discipline  of  computer  science  be-
longing to the “bio-inspired” computing area. Since the end of World
War  II,  the  main  ideas  of  evolutionary  computation  have  been  pub-
lished  [9]  and  widely  introduced  to  the  scientific  community  [10].
Hence,  the  “golden  era”  of  evolutionary  techniques  began  when  ge-
netic algorithms (GAs) by J. Holland [10], evolutionary strategies (ES)
by  Schwefel  [11]  and  Rechenberg  [12],  and  evolutionary  program-
ming (EP)  by Fogel  [13]  had been introduced.  All  these  designs  were
favored by the availability of powerful computers that are easy to pro-
gram, so that  for  the first  time interesting problems could be tackled
and evolutionary computation started to compete with and became a
serious alternative to other optimization methods. 

2. Motivations and Ideas 

The  core  idea  of  this  research  is  to  show  that  EA  dynamics,  in  gen-
eral, exhibit CN properties and that evolutionary dynamics can be an-
alyzed and visualized as CNs. This idea is based on evaluating the EA
dynamics  (e.g.,  parent  selection,  offspring  creation)  under  a  few pre-
sumptions. The first  is  that  each individual  is  considered to be a ver-
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tex  of  the  network.  The  second  is  that  there  are  no  parents  and  off-
spring (as typically considered amongst evolutionists); each individual
is considered to be alive and is not replaced by its offspring. A situa-
tion  that  is  evaluated  as  being  “replaced  by  offspring”  is  here  de-
crypted as an individual moving from a worse to a better position in
the space of possible solutions. The third and last very important pre-
sumption is  that each individual that moves to a better position (i.e.,
in  classical  terminology  “has  been  replaced  by  offspring”)  is  in  our
philosophy  a  vertex  that  gets  incoming  edges  from  other  parents
(individuals, vertices) that have participated in this improvement. For
example,  in  the  case  of  differential  evolution  (DE),  version
DERand1Bin,  usually  four  individuals  (three  randomly  selected  and
one  regularly  selected)  create  new  offspring  (i.e.,  new  position  of  an
individual; remember it is a vertex). If this new offspring-vertex at the
new position  has  better  fitness,  then  it  is  a  successful  vertex  that  in-
creases the number of incoming edges by three (randomly selected par-
ents-vertices).  If  fitness  is  worse,  then there are two possibilities.  The
first  is  that  the  number  of  incoming  and  outgoing  edges  will  not  be
changed;  the  second  is  that  each  of  three  cooperating  parents
(vertices) will  get one incoming edge from the final vertex (offspring)
that  has  a  worse  fitness  and  its  position  will  not  be  changed.  In  this
way  the  EA dynamics  can  be  easily  transformed  to  a  complex  struc-
ture.  This  paper  focuses  on  the  observation  and  description  of  CN
phenomena  in  evolutionary  dynamics.  Possibilities  of  its  use  are  dis-
cussed in Section 5. 

3. Evolutionary Algorithms and Complex Network Structures

For  the  experiments  described  here,  stochastic  optimization  algo-
rithms  such  as  DE  [14]  and  the  self-organizing  migrating  algorithm
(SOMA)  [15]  have  been  used.  All  experiments  were  performed  on  a
special server consisting of 16 Apple XServers (2ä2 GHz Intel Xeon,
1 GB RAM), each with four CPUs, so a total of 64 CPUs were avail-
able.  It  is  important  to  note  that  such  technology  was  used  to  save
time  due  to  the  large  number  of  calculations.  However,  it  must  be
stated  that  the  evolutionary  identification  described  here  can  also  be
solved  on  a  single  personal  computer  with  a  longer  execution  time.
Mathematica  7  was  used  for  all  calculations  and  data  processing.
Four versions of SOMA and two versions of DE were applied for all
simulations  in  this  paper.  The  optimizing  algorithm parameters  were
set up in such a way as to reach a similar value of maximal cost func-
tion evaluations for all versions used. Each EA version was applied 50
and 100 times in order to get less or more valuable statistical data.

DE [14] is a population-based optimization method that works on
real-number-coded individuals. For each individual xi,G  in the current
generation G,  DE generates a new trial  individual xi,G

£  by adding the

       
          

          

          
            

            
          

          
          

        
 

Do Evolutionary Algorithm Dynamics Create Complex Network Structures? 129

Complex Systems, 20 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.2.127



         
        

           

weighted difference between two randomly selected individuals xr 1,G

and xr 2,G  to a randomly selected third individual xr 3,G. The resulting
individual  xi,G

£  is  crossed  over  with  the  original  individual  xi,G.  The

fitness  of  the  resulting  individual,  referred  to  as  a  perturbed  vector
ui,G+1,  is  then  compared  with  the  fitness  of  xi,G.  If  the  fitness  of
ui,G+1  is  greater  than  the  fitness  of  xi,G,  then  xi,G  is  replaced  with
ui,G+1;  otherwise,  xi,G  remains  in  the  population  as  xi,G+1.  DE  is
quite  robust,  fast,  and effective,  with a global  optimization ability.  It
does  not  require  that  the  objective  function  be  differentiable,  and  it
works  well  even  with  noisy,  epistatic,  and  time-dependent  objective
functions. 

SOMA  is  a  stochastic  optimization  algorithm  based  on  the  social
behavior  of  competitive-cooperative  individuals  [15].  It  was  chosen
because it  has been proved that this algorithm has the ability to con-
verge toward the global optimum [15]. SOMA works on a population
of  candidate  solutions  in  loops,  called  migration  loops.  The  popula-
tion  is  initialized  by  being  randomly  and  uniformly  distributed  over
the search space at the beginning of the search. In each loop, the pop-
ulation  is  evaluated  and  the  solution  with  the  lowest  cost  value
becomes the leader. Apart from the leader, in one migration loop, all
individuals  will  traverse  the  searched  space  in  the  direction  of  the
leader. Mutation, the random perturbation of individuals, is an impor-
tant  operation  for  ES.  It  ensures  diversity  among  all  the  individuals
and also provides a means for restoring lost information in a popula-
tion.  Mutation  is  different  in  SOMA  as  compared  with  other  ES.
SOMA  uses  a  parameter  called  PRT  to  achieve  perturbations.  This
parameter  has  the  same  effect  for  SOMA  as  mutation  for  GAs.  The
novelty of  this  approach lies  in that the PRT vector is  created before
an individual starts its journey over the search space. The PRT vector
defines the final movement of an active individual in the search space.
The  randomly  generated  binary  perturbation  vector  controls  the
permissible dimensions for an individual.  If  an element of the pertur-
bation  vector  is  set  to  zero,  then  the  individual  is  not  allowed  to
change its position in the corresponding dimension. An individual will
travel  over  a  certain  distance  (called  the  path  length)  toward  the
leader  in  a  finite  number  of  steps  in  the  defined  length.  If  the  path
length is chosen to be greater than one, then the individual will over-
shoot the leader. This path is perturbed randomly. 

3.1 Selected Test Functions and Dimensionality
The  test  functions  applied  in  this  experiment  (in  order  to  record  the
evolutionary dynamics induced by searching on those functions) were
selected from a test bed of 17 test functions. In total, 16 test functions
were  selected  as  a  representative  subset  of  functions  that  shows  geo-
metrical  simplicity and  low complexity  as  well  as  functions  from the
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“opposite  side  of  the  spectrum.”  Selected  functions  include  the  first
DeJong,  Schwefel’s  function  (equation  (1)),  Rastrigin’s  function,  and
Ackley’s  function  (equation  (5))  amongst  others.  Each  of  them  was
used for identifying the dynamics and structure of CNs in 50 dimen-
sions (individual length was 50). Dimension is represented in the for-
mulas by variable D, so as can be seen, it is easy to calculate selected
functions  for  an  arbitrary  dimension.  The  functions  mentioned  were
selected due to their variety of complexity and mainly for the fact that
they  are  widely  used  by  researchers  working  with  EAs.  Another  rea-
son was that the speed of convergence, and thus the evolutionary dy-
namics,  are  different  for  simple  functions  like  the  first  DeJong  or  a
more complex example like Rana’s function. 
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3.2 Data for Complex Network Visualization
The  most  critical  point  of  this  research  and  related  simulations  was
determining  which  data  and  relations  should  be  selected  and  conse-
quently  visualized.  Based  on  the  investigated  algorithms,  we  believe
that  there  is  no  universal  approach,  but  rather  a  “personal”  one,
based  on  the  knowledge  of  algorithmic  principles.  Of  course,  some
conclusions  can  be  generalized  over  a  class  or  family  of  algorithms.
As  mentioned  in  the  previous  sections,  algorithms  such  as  DE  and
SOMA were used. Each class of algorithm is based on a different prin-
ciple. The main idea is that each individual is represented by a vertex
and  edges  between  vertices  should  reflect  population  dynamics,  that
is, interactions between individuals (the individuals used to create off-
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spring).  The  SOMA  algorithm,  as  described  in  [15],  consists  of  a
leader  attracting  the  entire  population  in  each  migration  loop
(equivalent of generation). In that class of swarm-like algorithm, it  is
clear  that  the  position  of  activated  leaders  in  the  population  can  be
recorded  like  a  vertex  (getting  new  inputs  from  remaining  vertices-
individuals)  and  used  (with  the  remaining  population)  for  visualiza-
tion  and  statistical  data  processing.  The  other  case  is  DE,  for
example,  DERand1Bin  in  which  each  individual  is  selected  in  each
generation to be a parent. Thus, in DE, we record only those individu-
als-parents  that  were  replaced  by  better  offspring  (i.e.,  a  vertex  with
added  connections).  In  the  DE  class  of  algorithms  we  have  omitted
the philosophy that a bad parent is replaced by a better offspring, but
accepted  the  philosophical  interpretation  that  an  individual  (worse
parent)  is  moving  to  a  better  position  (better  offspring).  Thus,  no
vertex-individual  has  to be either  destroyed or  replaced in  our  philo-
sophical viewpoint. If, for example, DERand1Bin has a parent that is
replaced  by  an  offspring,  then  it  is  considered  as  an  activation  (new
additional links, edges) of a worse parent from three other vertices se-
lected randomly [14].

3.3 Visualization Methods
Experimental data can be visualized in a few different ways, so a few
typical  visualizations  are  depicted  here.  The  principles  of  the  algo-
rithm  used  are  based  on  the  philosophy  of  competition  or  offspring
creation. Typical visualizations can appear as shown in Figures 1 and
2.  At  first  glance,  the  interactions  between  individuals  create  struc-
tures that look like CNs. However, we have encountered results with
visualizations that look like CNs, but after calculating network char-
acteristics  we  found  that  some  of  those  networks  did  not  belong  to
the  class  of  CNs  with  small-world  phenomena.  The  vertices  in  Fig-
ures!1 and 2 are colored by the ratio of incoming and outgoing edges:
a small vertex (small gray [pink] with dashed edges) has fewer incom-
ing edges than outgoing, white (middle-sized) vertex is  balanced (i.e.,
has  the  same number of  incoming edges  as  outgoing),  and dark gray
(green), the biggest, are vertices with more incoming edges than outgo-
ing.  The  light  gray  (yellow)  vertex  is  the  most  activated  individual
with  the  maximum  number  of  incoming  edges.  In  EA  jargon,  the
small vertex is an individual that has been used more for offspring cre-
ation  than  as  a  successful  parent,  and  pink  vertices  reflect  the
opposite.

To  ensure  that  an  algorithm  and  the  dynamics  being  investigated
can really be understood and modeled as a CN, typical characteristics
have  been  calculated  and  visualized  such  as  the  distributions  of  ver-
tices degree in Figures 3 and 4. 
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Figure 1. CN  example  of  SOMA  dynamics  in  a  natural  format.  Vertex-
individual  10  is  the  most  profitable  vertex.  Display  of  multiple  edges  is  dis-
abled in the figures for better visualization.
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Figure 2. Visualization  of  the  EA  dynamics  in  the  form of  a  CN.  Each  node
represents  an  individual  from  the  population,  each  edge  (multiple  edges  are
not depicted) depicts interaction with other individuals in the population.
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Figure 3. An  example  of  DERand1Bin  exhibiting  normal-like  distribution  of
vertices degree. No CNs were observed behind the evolutionary dynamics. 

Figure 4. An  example  of  a  histogram that  exhibits  a  long-tail  distribution  of
vertices degree. This is a typical result for SOMA swarm-like algorithms. 

4. Results

As  reported  earlier,  both  algorithms,  in  10  versions,  were  tested  on
various  functions  to  reveal  their  complex  dynamics  with  a  constant
level of test function dimensionality (i.e., individual length) and differ-
ent number of generations (migrations). All data was processed graph-
ically  and  is  shown  alongside  calculations  of  basic  statistical  proper-
ties as in Figures 3 through 8. The emergence of CN structure behind
evolutionary dynamics depends on many factors. However, some spe-
cial versions of the algorithms did not show CN structure despite the
fact that the number of generations was quite large. Figures 3, 4, and
8 show histograms of vertex connections. Figure 7 depicts the history
of  the  best  individuals-vertices  during  the  evolutionary  process.
Figures 5 and 6 show the history of 100 repeated simulations of CN
structure  formation  (compare  with  Figure  7,  where  only  one  simula-
tion  is  recorded).  Some  ideas  about  the  results  are  discussed  in
Section!5.
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Figure 5. One  hundred  repeated  simulations  of  CN  structures  forming  on
equation (2). 
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Figure 6. One  hundred  repeated  simulations  of  CN  structures  forming  on
equation (1). 
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Figure 7. Activated  leaders  (y  axis)  with  dependence  on  migrations  (x  axis)
SOMA. Note that with migration between 200 and 300, the winner is still the
first individual in the population. 
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Figure 8. Histogram  of  the  vertex  connections  based  on  a  different  experi-
ment. Thanks to the fact that the first individual is still selected as the winner,
it gets a lot of connections (8700) and the histogram does not look like a typi-
cal long-tail distribution. 

5. Conclusion

The main motivation of this research is to determine whether it is pos-
sible to visualize and simulate underlying dynamics of an evolutionary
process as a complex network (CN). Based on the preliminary results
of  only  two algorithms with  10 versions  and 16 out  of  17 test  func-
tions, the following can be stated.

1. Number  of  generations.  The  occurrence  of  CN  structure  depends  on
the number of generations. With a small number of generations, no CN
structure  was  established.  This  effect  can be  easily  understood because
a  small  number  of  generations  means  that  evolutionary  algorithms
(EAs) do not have enough time to establish CN structure. This observa-
tion is  quite  logical  when CN structure  is  not  observable  at  the  begin-
ning  of  the  linking  process.  During  our  experiments,  the  moment  of
establishing a CN structure was observed to depend on cost function di-
mension,  population  size,  the  algorithm  used,  and  cost  function.  Very
generally, EAs searching for a global extreme seem quite random at the
beginning  and  when  the  global  extreme  domain  is  discovered,  then  a
CN structure is quite quickly established. 

2. Dimensionality.  The  impact  on  CN  structure  forming  has  been  ob-
served when the dimension of the cost function was big and the number
of generations was too low. The selected EA was not able to finish the
global extreme search successfully so all connections were not properly
established. Thus, if  high-dimensional cost functions are used, then the
number of generations has to be selected so that at least the domain of
the global extreme is found. On the other side, if the number of genera-
tions  (or  migrations  in  the  case  of  the  SOMA algorithm) is  very  large,
then  it  is  possible  to  observe  the  effect  of  the  “rich  becoming  richer,”
that  is,  one  vertex  (individual)  wins  repeatedly  (see  Figures  7  and  8).
This  moment  usually  means  that  the  global  extreme  has  been  found
and further searching is not necessary. 

3. Test  functions.  The  dependence  of  the  test  function  on  CN  structure
forming  was  not  strictly  observed.  The  general  consensus  is  that  in
more complex test functions, such as Schwefel’s (equation (1)), the algo-
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 p       q    g
rithm needs more generations to establish a CN structure, that is, more
complex functions require more generations and/or a bigger population
size. In the case of simpler functions such as the first De Jong and low
dimensions,  the  global  extreme  is  quickly  found  and  the  phase  of  CN
structure  creation  is  very  short,  which  activates  the  last  phase  of  the
rich becoming richer (see Figures 5 through 8). 

4. Population size. CN structure formation was usually observed for popu-
lations of 100 or more individuals for 50 dimensions. Again, it is a pa-
rameter that alone does not influence CN structure formation, but does
in combination with other parameters. 

5. Algorithm used. CN structure formation has also been clearly observed
with  algorithms  that  are  more  or  less  based  on  swarm  philosophy  or
partly associated with it.  For example,  DERand1Bin did not show any
CN structure formation (in principle, each individual is selected to be a
parent);  see  Figure  3.  In  the  case  of  DELocalToBest,  in  which the  best
solution in the population plays an important role, CN structures have
been observed, as well as in the SOMA strategies; see Figure 4. The con-
clusion reached is  that CN structure formation is  more likely observed
with  swarm-like  algorithms  rather  than  “randomly  remoted”  algo-
rithms. We think that this  is  quite logical  and close to the idea of pre-
ferred  linking  in  CNs  that  model  social  behavior  such  as  citation
networks.

The possible use and benefit of this approach, according to us, is as
a  novel  approach  to  evaluate  and  control  evolutionary  dynamics.
Based  on  the  numerically  demonstrated  fact  (no  mathematical  proof
has been made) that EA dynamics can be visualized like CNs, we be-
lieve that there is a new area of research for the study of EA dynamics
and their control via CN techniques of control [16]. Another domain
of research is  to study information flow in such a network by means
of so-called k-shell decomposition. 

A further issue of this research is whether EA dynamics, visualized
as CNs, can be used elsewhere. Our answer is yes. Based on the phi-
losophy of  so-called coupled map lattice  (CML) systems described in
[17],  it  is  possible  to  visualize  CNs like  a  CML system (let  us  call  it
here CNSCML). In fact, we are able to visualize EA dynamics in this
way like a CML system. Figure 9 can be used as an example where a
zoom of a CNSCML is  depicted.  Each row represents  one individual
(in EA) or vertex (in CN visualization). Different colors represent dif-
ferent levels of vertex (individual) activations. As numerically demon-
strated and proven in [17–20], it is possible to control such a system.
This means that there is a real possibility of controlling the dynamics
of EAs (CNs) via CML control philosophy. 

For now, this paper has proposed a method for visualizing EA dy-
namics  as  a  CNSCML.  Our  next  research  will  be  focused  on  the
following.

1. Collection  of  the  artificially  generated  data  capturing  CN dynamics  as
well as data from existing real CNs. 
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2. Use of results from our previous research, in which we have shown that
EA dynamics can be modeled as a CN (EACN). We would like to con-
vert  EACN to the EACNCML and try to control  the observed EA dy-
namics in order to increase performance. 

3. Based  on  data  from items  1  and  2,  an  exact  analysis  of  when  chaotic
regimes  are  observed  in  CNCML will  be  done  and also  an  analysis  of
what kind of routes to chaos exist (intermittence, crisis, bifurcations).

4. Use  of  selected  EAs  on  CNSCML  control  with  reverse  investigation;
what  exact  control  has  such  an  impact  on  the  original  CN  structure
(control  here basically  means that  EAs have to change the structure of
a!CN). 

Figure 9. A zoom of EA dynamics as a CML system (i.e., EA Ø CN Ø CML)
with 20 vertices in 500 iterations.
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