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Abstract: The present contribution is devoted to the theory of fuzzy sets, especially Atanassov
Intuitionistic Fuzzy sets (IF sets) and their use in practice. We define the correlation between IF
sets and the correlation coefficient, and we bring a new perspective to solving the problem of data
file reduction in case sets where the input data come from IF sets. We present specific applications
of the two best-known methods, the Principal Component Analysis and Factor Analysis, used to
solve the problem of reducing the size of a data file. We examine input data from IF sets from three
perspectives: through membership function, non-membership function and hesitation margin. This
examination better reflects the character of the input data and also better captures and preserves the
information that the input data carries. In the article, we also present and solve a specific example
from practice where we show the behavior of these methods on data from IF sets. The example
is solved using R programming language, which is useful for statistical analysis of data and their
graphical representation.

Keywords: Atanassov IF sets; principal component analysis; factor analysis; methods comparison

1. Introduction

In mathematics, just as in other scientific disciplines, there is a shift from theoretical
mathematics to mathematics which would be applicable in practice. Such mathematics
knowledge includes the field of statistics and probability. The theory of probability is
a relatively young mathematical discipline whose axiomatic construction was built by
Russian mathematician Kolmogorov in 1933 [1]. For the first time in history, the basic
concepts of probability theory were defined precisely but simply. A random event was
defined as a subset of a space, a random variable as a measurable function, and its mean
value as an integral (abstract Lebesgue integral). Like the Kolmogorov theory of probability
in the first half of the 20th century, the Zadeh fuzzy set played an important role in the
second half of the 20th century [2–5]. Zadeh’s concept of a fuzzy set was generalized by
Atanassov. In May 1983 it turned out that the new sets allow the definition of operators
which are, in a sense, analogous to the modal ones (in the case of ordinary fuzzy sets
such operators are meaningless, since they reduce to identity). It was then that the author
realized that he had found a promising direction of research and published the results
in [6]. Atanassov defined Intuitionistic Fuzzy sets (IF sets) and described them in terms
of membership value, non-membership value and hesitation margin [7,8]. An IF set is
a pair of functions = (µA, νA) where function µA : Ω→ 〈0, 1〉 is called the membership
function and function νA : Ω→ 〈0, 1〉 is called the non-membership function, in force
that µA + νA ≤ 1. Many writers have attempted to prove some known assertions from
the classical probability theory in the theory of IF sets [9–12] and apply known statistical
methods in these sets.
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In 2010, Bujnowski P., Kacprzyk J., and Szmidt E. [13] defined a correlation coefficient
(more in Section 3) and presented novel-approach dimensionality reduction data sets
through Principal Component Analysis on IF sets [14]. For this article, we saw the practical
use of IF sets to solve the problem of the reduction of dimensionality data sets. Therefore,
it motivated us to continue this idea.

One of the main problems in data analysis is to reduce the number of variables
while maintaining the maximum information that the data carries. Among the most-used
methods to reduce the dimension of data are Principal Component Analysis (PCA) and
Factor Analysis (FA) (more in Section 2). The source data from an IF set accurately reflect
the nature of the component under investigation. In the classical case of the use of methods
PCA and FA, we examine the sample only from a one-sided view. In the case of data
from an IF set, the sample is examined from two views: membership function and non-
membership function. Alternatively, we can talk about up to three views if we include the
degree of uncertainty of the IF set of a given data sample. The degree of uncertainty can be
defined for each IF set in Ω by the formula

πA(ω) = 1− µA(ω)− νA(ω) (1.1)

while 0 ≤ πA(ω) ≤ 1 for each ω ∈ Ω [15].
Based on the above, an IF set better describes the character of the studied compounds.

The paper aims to show the use of data from an IF set to address a specific example for
known methods used to reduce the dimensions of the data set. The comparison of methods
with classical theory and the comparison of methods with each other are used to reduce the
dimensions of the data set. The rest of the paper is organized as follows: Section 2 contains the
methods’ description. Section 3 defines the correlation between IF sets. Section 4 contains
the specific example of the use of Principal Component Analysis and Factor Analysis
methods. Section 5 contains the conclusion, a comparison of methods and a discussion.

2. Methods’ Description

Principal Component Analysis (PCA) was introduced in 1901 by Karl Pearson [16].
The method aims to transform the input multi-dimensional data so that the output data
of the most important linear directions is obtained, with the least significant directions
being ignored. Thus, we extract the characteristic directions (characters) from the original
data and at the same time reduce the data dimension. The method is one of the basic
methods of data compression—original n variables can be represented by a smaller number
m of variables while explaining a sufficiently large part of the variability of the original
data set. The system of new variables (the so-called main components) consists of a linear
combination of the original variables. The first main component describes the largest part
of the variability of the original data set. The other major components contribute to the
overall variance, always with a smaller proportion. All pairs of main components are
perpendicular to each other [17]).

The basic steps of the PCA include the construction of a correlation matrix from source
data, the calculation of eigenvalues of the correlation matrix, the alignment from the largest
(λ1 > · · · > λn), the calculation of eigenvectors of the correlation matrix corresponding
to its eigenvalues (υ1, . . . , υn), the calculation of the variability of the original data

(
σ2),

the determination of the number of main components sufficient to represent the original
variables based on variability and the transfer of the original data to a new base. The
number of major components (MC) is determined either by our consideration of the need
to maintain information (eigenvalues, which explain e.g., 90% of variability). By Kaiser’s
Rule using those MC whose eigenvalue is greater than the average of all eigenvalues (with
standard data, the average is 1, i.e., taking the MC, whose eigenvalue is greater than 1),
we use MC, which together account for at least 70% of the total variance, or based on a
graphical display, the so-called Screen Plot chart, where we find a turning point in this
chart and take MC into account for this turning point.
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Factor Analysis (FA) was introduced in 1904 by Charles Edward Spearman and
described in 1995 by Bartholomew D. J. [18]. This method allows new variables to be
created from a set of original variables. It allows you to find hidden (latent) causes that
are a source of data variability. With latent variables, it is possible to reduce the number
of variables while keeping the maximum amount of information, and to establish a link
between observable causes and new variables (factors). If we assume that input variables
are correlated, then the same amount of information can be described by fewer variables.
In the resulting solution, each original variable should be correlated with as few factors as
possible, and the number of factors should be minimal. The factor saturations reflect the
influence of the kth common factor on the jth random variable. Several methods are used
to estimate factor saturation, so-called factor extraction methods. In our paper, we used the
method of the main components. Other known methods include the maximum plausibility
method or the least-squares method.

The number of common factors can be determined either by the eigenvalue criterion
(the so-called Kaiser’s Rule), when factors which have their eigenvalues λ > 1 are con-
sidered significant. The reliability of this rule depends on the number of input variables
(if the number of variables is between 20 and 50, the rule is reliable, if the number is less
than 20, there is an erroneous tendency to determine a smaller number of factors, and
if the number is greater than 50, this leads to a false determination of a large number of
factors) and the criterion of the percentage of explained variability when common factors
should explain as much as possible the total variability. Alternatively, it depends on the
Screen Plot chart of eigenvalues (it is recommended that several factors be used; they are
located in front of the turning point on the chart). The basic steps of FA are the selection
of input data (assumption of correlation), the determination of the common factors, the
estimation of parameters (if the communality is less than 0.5, it is appropriate to exclude
the given indicator from the analysis), the rotation of factors (Varimax Method—orthogonal
rotation) and the factor matrix (factor saturation matrix). High factor saturation means
that the factor significantly influences the indicator. Those factors whose absolute value is
greater than 0.3 are considered to be statistically significant, medium significant factors
are those with an absolute value greater than 0.4, and very significant factors are those
with an absolute value greater than 0.5 [17]. The main idea of the methods is to reduce the
number of variables (reduce the dimension of the data file) while maintaining the highest
variability of the original data. For both methods we need the construction of a correlation
matrix from source data. Therefore, we need to define the correlation coefficient for IF sets.

3. Correlation between IF Sets

The correlation between IF sets was introduced by Szmidt and Kacprzyk in 2010 [13].
Let A, B are IF sets be defined at Ω = {ω1, ω2, . . . , ωn}. Sets A, B are characterized by
pair sequence:

[(µA(ω1), νA(ω1), πA(ω1)), (µB(ω1), νB(ω1), πB(ω1))],

[(µA(ω2), νA(ω2), πA(ω2)), (µB(ω2), νB(ω2), πB(ω2))],

. . .

[(µA(ωn), νA(ωn), πA(ωn)), (µB(ωn), νB(ωn), πB(ωn))],

where each function corresponds to the competence function, the incompetence function,
and the degree of uncertainty of the sets A and B.

Definition 1. (Szmidt, Kacprzyk, Bujnowski [14]) The correlation coefficient rA−IFS(A, B)
between two IF sets A and B in Ω is:

rA−IFS(A, B) =
1
3
(r1(A, B) + r2(A, B) + r3(A, B)) (1.2)
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where

r1(A, B) =
∑n

i=1(µA(ωi)− µA)(µB(ωi)− µB)(
∑n

i=1(µA(ωi)− µA)
2
) 1

2
(

∑n
i=1(µB(ωi)− µB)

2
) 1

2
(1.3)

r2(A, B) =
∑n

i=1(νA(ωi)− νA)(νB(ωi)− νB)(
∑n

i=1(νA(ωi)− νA)
2
) 1

2
(

∑n
i=1(νB(ωi)− νB)

2
) 1

2
(1.4)

r3(A, B) =
∑n

i=1(πA(ωi)− πA)(πB(ωi)− πB)(
∑n

i=1(πA(ωi)− πA)
2
) 1

2
(

∑n
i=1(πB(ωi)− πB)

2
) 1

2
(1.5)

At the same time

µA =
1
n

n

∑
i=1

µA(ωi), νA =
1
n

n

∑
i=1

νA(ωi), πA =
1
n

n

∑
i=1

πA(ωi)

µB =
1
n

n

∑
i=1

µB(ωi), νB =
1
n

n

∑
i=1

νB(ωi), πB =
1
n

n

∑
i=1

πB(ωi)

The correlation coefficient (1.2) depends on the amount of information expressed as a
competence function and as an incompetence function (1.3), (1.4) as well as the reliability
of the information expressed as a degree of uncertainty (1.5). For the correlation coefficient
(1.2), the following properties apply [14]:

1. rA−IFS(A, B) = rA−IFS(B, A)
2. If A = B, then rA−IFS(A, B) = 1
3. |rA−IFS(A, B)| ≤ 1

These properties apply to each element (1.3)—(1.5). The correlation coefficient
rA−IFS(A, B) = 1 not only for A = B but also for the perfect linear correlation of data [5].

4. Use of PCA and FA Methods

We have selected the 20 most sold car brands for 2020 (we tracked sales for a period of
12 months). The data come from our own survey, in which we asked car dealers in two
cities (Nitra and Žilina, Slovak Republic) about the best-selling car brands in 2020. There
were 20 brands listed and 5 criteria were assessed (the criteria were not specifically selected,
they were created on the basis of most common questions that buyers ask when buying a
car): A—power, B—equipment, C—price, D—driving properties, E—consumption. Each
criterion was evaluated twice: the percentage the criterion is met for each participant and
the percentage the criterion is not met. The results are in Table 1 below.

Data A, B, C, D and E from Table 1 are assigned the competence and incompetence
functions. Since the values in Table 1 are expressed as percentages, we can easily assign the
competence function of the values in the “met” column and the incompetence function to
the values in the “not met” column, provided µ, ν ∈ 〈0, 1〉 that a µ + ν ≤ 1 for A, B, C, D,
and E. Then these values are IF data. From the relationship (1.1) we calculate the degree of
uncertainty for A, B, C, D, and E (Table 2).

Table 1. The competence and the incompetence functions.

A (%) B (%) C (%) D (%) E (%)
Brand m nm m nm m nm m nm m nm

1 84 7 81 11 31 49 90 6 70 20
2 73 13 53 30 20 63 53 21 60 27
3 56 13 65 14 4 76 59 14 55 18
4 77 11 63 4 11 60 41 20 62 10
5 93 4 71 11 29 47 76 14 63 33
6 53 35 57 38 38 50 47 46 44 37
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Table 1. Cont.

A (%) B (%) C (%) D (%) E (%)
Brand m nm m nm m nm m nm m nm

7 91 3 85 11 24 56 75 10 25 21
8 88 6 48 12 45 26 58 40 51 40
9 69 15 62 11 5 90 74 16 78 8

10 36 25 82 6 11 77 70 22 61 22
11 62 31 71 17 17 76 48 22 79 16
12 62 27 49 16 18 57 76 2 56 34
13 62 31 60 24 44 38 47 27 81 18
14 55 30 50 33 38 57 76 17 48 26
15 61 38 58 18 56 41 62 28 35 24
16 71 4 55 16 20 76 42 49 90 5
17 50 39 60 27 6 91 48 36 54 36
18 75 11 88 1 20 61 74 7 56 4
19 74 6 67 6 23 67 84 8 67 24
20 59 27 64 21 39 51 66 12 78 8

Table 2. Degree of uncertainty.

A B C D E
Brand µA νA πA µB νB πB µC νC πC µD νD πD µE νE πE

1 0.84 0.07 0.09 0.81 0.11 0.08 0.31 0.49 0.20 0.90 0.06 0.04 0.70 0.20 0.10
2 0.73 0.13 0.14 0.53 0.30 0.17 0.20 0.63 0.17 0.53 0.21 0.26 0.60 0.27 0.13
3 0.56 0.13 0.31 0.65 0.14 0.21 0.04 0.76 0.20 0.59 0.14 0.27 0.55 0.18 0.27
4 0.77 0.11 0.12 0.63 0.04 0.33 0.11 0.60 0.29 0.41 0.20 0.39 0.62 0.10 0.28
5 0.93 0.04 0.03 0.71 0.11 0.18 0.29 0.47 0.24 0.76 0.14 0.10 0.63 0.33 0.04
6 0.53 0.35 0.12 0.57 0.38 0.05 0.38 0.50 0.12 0.47 0.46 0.07 0.44 0.37 0.19
7 0.91 0.03 0.06 0.85 0.11 0.04 0.24 0.56 0.20 0.75 0.10 0.15 0.25 0.21 0.54
8 0.88 0.06 0.06 0.48 0.12 0.40 0.45 0.26 0.29 0.58 0.40 0.02 0.51 0.40 0.09
9 0.69 0.15 0.16 0.62 0.11 0.27 0.05 0.90 0.05 0.74 0.16 0.10 0.78 0.08 0.14

10 0.36 0.25 0.39 0.82 0.06 0.12 0.11 0.77 0.12 0.70 0.22 0.08 0.61 0.22 0.17
11 0.62 0.31 0.07 0.71 0.17 0.12 0.17 0.76 0.07 0.48 0.22 0.30 0.79 0.16 0.05
12 0.62 0.27 0.11 0.49 0.16 0.35 0.18 0.57 0.25 0.76 0.02 0.22 0.56 0.34 0.10
13 0.62 0.31 0.07 0.60 0.24 0.16 0.44 0.38 0.18 0.47 0.27 0.26 0.81 0.18 0.01
14 0.55 0.30 0.15 0.50 0.33 0.17 0.38 0.57 0.05 0.76 0.17 0.07 0.48 0.26 0.26
15 0.61 0.38 0.01 0.58 0.18 0.24 0.56 0.41 0.03 0.62 0.28 0.10 0.35 0.24 0.41
16 0.71 0.04 0.25 0.55 0.16 0.29 0.20 0.76 0.04 0.42 0.49 0.09 0.90 0.05 0.05
17 0.50 0.39 0.11 0.60 0.27 0.13 0.06 0.91 0.03 0.48 0.36 0.16 0.54 0.36 0.10
18 0.75 0.11 0.14 0.88 0.01 0.11 0.20 0.61 0.19 0.74 0.07 0.19 0.56 0.04 0.40
19 0.74 0.06 0.20 0.67 0.06 0.27 0.23 0.67 0.10 0.84 0.08 0.08 0.67 0.24 0.09
20 0.59 0.27 0.14 0.64 0.21 0.15 0.39 0.51 0.10 0.66 0.12 0.22 0.78 0.08 0.14

First, we will conduct the Principal Component Analysis. We start by calculating the
values of the correlation matrices from the values of the input variables of the competence
function Rµ, the incompetence function Rν and the degree of uncertainty Rπ . We calculate
the values of the correlation matrices from Equations (1.3)–(1.5).

Rµ =


1.00000000 0.17614030 0.15817266 0.26372330 −0.06097966
0.17614030 1.00000000 −0.25863849 0.41187539 −0.05797482
0.15817266 −0.25863849 1.00000000 0.05248103 −0.22512182
0.26372330 0.41187539 0.05248103 1.00000000 −0.18133075
−0.06097966 −0.05797482 −0.22512182 −0.18133075 1.00000000
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Rµ =


1.00000000 0.17614030 0.15817266 0.26372330 −0.06097966
0.17614030 1.00000000 −0.25863849 0.41187539 −0.05797482
0.15817266 −0.25863849 1.00000000 0.05248103 −0.22512182
0.26372330 0.41187539 0.05248103 1.00000000 −0.18133075
−0.06097966 −0.05797482 −0.22512182 −0.18133075 1.00000000



Rν =


1.0000000 0.61169656 0.06464770 0.25152916 0.2390998
0.6116966 1.00000000 −0.09219544 0.45217323 0.4269612
0.0646477 −0.09219544 1.00000000 −0.03038455 −0.3267094
0.2515292 0.45217323 −0.03038455 1.00000000 0.2221003
0.2390998 0.42696123 −0.32670936 0.22210033 1.0000000



Rπ =


1.00000000 0.01429969 −0.18037422 −0.02824073 −0.06232790
0.01429969 1.00000000 0.25376953 0.04773643 −0.25863891
−0.18037422 0.25376953 1.00000000 0.26175490 0.04768127
−0.02824073 0.04773643 0.26175490 1.00000000 0.06177976
−0.06232790 −0.25863891 0.04768127 0.06177976 1.00000000


The eigenvalues of the correlation matrix Rµ are: λ1 = 1.6328865, λ2 = 1.3278224,

λ3 = 0.9150624, λ4 = 0.6406398, λ5 = 0.4835889. The variability of the input variables (sum
of the elements on the main diagonal = sum of the eigenvalues of the correlation matrix) is
σ2 = 5. The eigenvalues are displayed on the charts (Figure 1, Table 3). From the graph, we
can see that the turning point is behind the third component. Additionally, according to
Kaiser’s Rule, the first two components are considered.

Figure 1. Eigenvalues of the correlation matrix Rµ.

Table 3. The PCA results calculated using the R program are as follows.

Importance of Components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.2778445 1.1523118 0.9565889 0.8003998 0.69540557
Proportion of Variance 0.3265773 0.2655645 0.1830125 0.1281280 0.09671778
Cumulative Proportion 0.3265773 0.5921418 0.7751543 0.9032822 1.00000000

In the row “Standard deviation”, there are the values of the main components, hence(√
λi, i = 1, 2, 3, 4, 5

)
. In the row “Proportions of Variance”, there are the shares of variabil-

ity λi
σ2 , i = 1, 2, 3, 4, 5. And in the row “Cumulative Proportion”, there are the cumulative
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shares of variability. We can see that the first two components meet 77.52% of the input
data variability.

We will do the same for the values of the incompetence function input variables and
the degree of uncertainty.

The eigenvalues of the correlation matrix Rν are λ1 = 2.1645080, λ2 = 1.1884539,
λ3 = 0.7637763, λ4 = 0.5663754, λ5 = 0.3168864. The variability of the input variables is
σ2 = 5. The eigenvalues are displayed on the charts (Figure 2, Table 4). According to the
graph, the turning point could be located after the second component. Both the first two
components are considered from the graph and the Kaiser Rule.

Figure 2. Eigenvalues of the correlation matrix Rν.

Table 4. The PCA results calculated using the R program are as follows.

Importance of Components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.4712267 1.0901623 0.8739429 0.7525792 0.56292667
Proportion of Variance 0.4329016 0.2376908 0.1527553 0.1132751 0.06337729
Cumulative Proportion 0.4329016 0.6705924 0.8233476 0.9366227 1.00000000

The first two components meet 67.06% of the input data variability, which is in-
sufficient. The first three components meet 82.33% of the input data variability, which
is permissible.

The eigenvalues of the correlation matrix Rπ are λ1 = 1.4352248, λ2 = 1.2553099,
λ3 = 0.9695103, λ4 = 0.7644114, λ5 = 0.5755435. The variability of the input variables
is σ2 = 5. The eigenvalues are displayed on the charts (Figure 3, Table 5). The turning
point would be located behind the second component according to the graph. According
to Kaiser’s Rule, the first two components are considered.
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Figure 3. Eigenvalues of the correlation matrix Rπ .

Table 5. The PCA results calculated using the R program are as follows.

Importance of Components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.198009 1.1204061 0.9846371 0.8743063 0.7586459
Proportion of Variance 0.287045 0.2510620 0.1939021 0.1528823 0.1151087
Cumulative Proportion 0.287045 0.5381069 0.7320090 0.8848913 1.0000000

The first two components meet 53.81% of the input data variability, which is in-
sufficient. The first three components meet 73.2% of the input data variability, which
is permissible.

Now we calculate the correlation matrix R for the complete correlation of components
according to (1.2).

R =


1.00000000 0.2673789 0.01414871 0.16233724 0.03859740
0.2673789 1.0000000 −0.03235480 0.30392835 0.03678250

0.01414871 −0.0323548 1.00000000 0.09461713 −0.16804997
0.16233724 0.3039284 0.09461713 1.00000000 0.03418311
0.03859740 0.0367825 −0.16804997 0.03418311 1.00000000


The eigenvalues of the correlation matrix R are λ1 = 1.5023867, λ2 = 1.1774258,

λ3 = 0.8652105, λ4 = 0.8134299, λ5 = 0.6415472. We will display them on the chart (Figure 4).
From the graph, it is visible that the turning point is located behind the third com-

ponent. According to Kaiser’s Rule, the first two components which are considered meet
53.6% of the input data variability, which is insufficient. Therefore, we will consider the
first three components that meet the 70.9% of input data variability, which is sufficient.

From the results received so far, we can determine the number of main components at
3. The results of the overall correlation also enable a reduction in the dimension from five
to three, i.e., the original 5 components can be replaced by three main components while
maintaining 70.9% of the original data variability.

We mark the eigenvectors of the covariance matrix Rµ as Vµi , i = 1, 2, 3, 4, 5. Similarly,
we mark our eigenvector of the covariance matrix Rν as Vνi and the eigenvectors of the
covariance matrix Rπ Vπi for i = 1, 2, 3, 4, 5. The results of PCA are summarized in Table 6.
The columns in the table represent the first three eigenvectors of the covariance matrices
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Rµ, Rν, Rπ . The main components are obtained by multiplying the eigenvectors with the
original data.

Figure 4. Eigenvalues of the correlation matrix R.

Table 6. PCA results.

Vµ1 Vµ2 Vµ3 Vν1 Vν2 Vν3 Vπ1 Vπ2 Vπ3

A −0.46 −0.19 0.69 0.49 −0.36 0.48 −0.27 0.35 0.81
B −0.55 0.44 −0,14 0.60 −0,14 0.10 0.50 0.51 −0.04
C −0.08 −0.75 0.16 −0.16 −0,80 0.02 0.67 −0.17 −0.01
D −0.63 0.03 −0.06 0.43 −0.15 −0.85 0.46 −0.29 0.57
E 0.29 0.45 0.69 0.44 0.44 0.16 −0.12 −0.71 0.14

In this way, we will gain a reduction in the dimension of the original data from five
to three.

We will also address the cases of Factor Analysis based on the PCA method. Input
data are shown in Table 2. The correlation matrices and their eigenvalues are calculated in
the previous instance of the PCA method. As the number of input variables is 20, we are
offered at least two criteria to determine the number of factors. The eigenvalue criterion
determines for us two important factors (we can see this with eigenvalues of the correlation
matrices Rµ, Rν, Rπ ; only the first two values are greater than 1 in any case).

From the chart of eigenvalues, Figure 1, we can see that the turning point is behind
the third component. From the graphs Figures 2 and 3, we can see that the turning point is
at the second component in both cases. Let us have a look at the variability of the data. If
two factors are considered, data variability is very low in all cases. At three components,
data variability is greater than 70%, so it is sufficient. Hence, we will further consider three
factors. We will first solve the case of Factor Analysis (hereinafter FA) for the input data of
the competence functions µA, µB, µC, µD, µE. The first three factors represent 77.52% of the
input data variability. We perform the FA using the R program (Table 7), and we use the
Varimax method to rotate the factors.
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Table 7. Factor Analysis.

Standardized Loadings (Pattern Matrix) Based upon Correlation Matrix

RC1 RC2 RC3 h2

A 0.22 0.08 0.87 0.82
B 0.87 0.04 0.02 0.76
C −0.46 −0.52 0.54 0.77
D 0.68 −0.28 0.34 0.66
E −0.14 0.91 0.06 0.86

At the output, we have a calculated matrix of factor saturation after rotations (columns
RC1-RC3). In column h2, there are values of the communalities. We can see that the first
factor (the first column of RC1) is highly saturated in the second and fourth variables.
The second factor (column RC2) is highly saturated in the fifth variable. The third factor
(column RC3) is highly saturated in the first variable. In the third variable, saturation is not
high enough for either factor. The values of communalities are sufficiently high, so we can
consider presenting the original five variables with three variables.

Let us try to exclude the third variable from the original data and repeat the FA (Table 8)
without this variable. In this case, the first three factors represent 86.05% of the variability.

Table 8. Factor Analysis.

Standardized Loadings (Pattern Matrix) Based upon Correlation Matrix

RC1 RC2 RC3 h2

A 0.13 −0.02 0.98 0.98
B 0.89 0.07 0.00 0.80
C 0.76 −0.22 0.24 0.69
E −0.07 0.99 −0.02 0.98

From the output, we can see that the factor saturation matrix is factorially clean
because it has high factor saturation with just one factor. The values of communalities
are sufficiently high. It is confirmed that we can use three factors instead of the original
five variables.

Next, we address the case of FA (Table 9) for input data of incompetence functions
νA, νB, νC, νD, νE. The first three factors represent 82.33% of the variability of the input data.

Table 9. Factor Analysis.

Standardized Loadings (Pattern Matrix) Based upon Correlation Matrix

RC1 RC2 RC3 h2

A 0.92 −0.06 0.04 0.85
B 0.79 0.21 0.37 0.80
C 0.14 −0.59 0.00 0.81
D 0.18 0.05 0.97 0.98
E 0.41 0.70 0.12 0.68

We can see that the values of communalities are sufficiently high. In the first four
variables, the matrix has high factor saturation with just one factor, but the fifth variable
is highly saturated with a second factor. Additionally, the first factor, where saturation is
greater than 0.4, is statistically significant.

We will try to exclude one variable. Let us delete the third variable as in the previous
case. In this case, the first three factors represent 92.04% of the variability (Table 10).

The factor saturation matrix is factorially clean. The values of communalities are
sufficiently high. It is confirmed that we can use three factors instead of the original
five variables.
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We will still solve the case of FA (Table 11) for input data of degree of uncertainty
πA, πB, πC, πD, πE. The first three factors represent 73.2% of the variability of the in-
put data.

Table 10. Factor Analysis.

Standardized Loadings (Pattern Matrix) Based upon Correlation Matrix

RC1 RC2 RC3 h2

A 0.95 0.05 0.05 0.91
B 0.74 0.38 0.34 0.81
C 0.16 0.97 0.09 0.98
D 0.15 0.09 0.98 0.98

Table 11. Factor Analysis.

Standardized Loadings (Pattern Matrix) Based upon Correlation Matrix

RC1 RC2 RC3 h2

A −0.01 0.07 0.94 0.90
B 0.27 0.79 −0.06 0.69
C 0.71 0.21 −0.37 0.68
D 0.83 −0.11 0.16 0.72
E 0.22 −0.78 −0.11 0.67

We can see that the values of communalities are sufficiently high. The matrix is not
completely factorially clean. We will, therefore, try to exclude the third variable, as in the
previous cases. Then, the first three factors represent 82.06% of the input data variability
(Table 12).

Table 12. Factor Analysis.

Standardized Loadings (Pattern Matrix) Based upon Correlation Matrix

RC1 RC2 RC3 h2

A 0.02 −0.01 1.00 0.99
B 0.80 0.18 −0.05 0.68
D 0.00 0.98 −0.01 0.95
E −0.78 0.19 −0.09 0.66

The factor saturation matrix is factorially clean. The values of communalities are
sufficiently high. It is confirmed that we can use three factors instead of the original
five variables.

In this way, we will gain a reduction in the dimension of the original data from five
to three.

5. Conclusions, Comparison of Methods

The aim of our work was to extend the use of IF sets in probability theory and statistics
and to verify the behavior of IF data in solving the problem of multidimensional data
analysis. We dealt with the issue of reducing the size of the data file while maintaining
sufficient variability of the data (that is, to preserve sufficient information that the data
carries). We applied the methods to the IF sets and then interpreted them on a specific
example from common practice. In our example, we have described in detail the behavior
of the given methods on IF sets in three directions through membership function, non-
membership function and hesitation margin.

If we examine the data from three perspectives (membership function, non-membership
function and hesitation margin) using the PCA method and Kaiser’s Rule, we are able to
reduce the dimension of the data from five to two. With such a reduction, the variability is
too low. We achieve the sufficient variability when reducing the dimension from five to
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three, which we also confirmed by the FA method. Thus, both methods allow the dimen-
sion of the original data set to be reduced from five to three while maintaining sufficient
variability of the original data.

Similarly, in the classical case when using the PCA and FA methods, a reduction of
the dimension from five to three is permissible. In this case, the variability of the data is
lower, i.e., it retains less information of the original data. Thus, we can say that based on
the solved example, we came to the following conclusion: The proposed reduction of data
dimension by PCA and FA methods is the same in the classical case as in the use of data
from IF sets, but when examining data from IF sets in three directions, a higher variability
of data remains.

In this paper, we presented a new approach in solving PCA and FA methods using
three data perspectives from IF sets (membership function, non-membership function and
hesitation margin), which better describe the sample and maintain higher data variability
when reducing the dimension.
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