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Abstract: Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemi-
cal synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min
(ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled via sono-
chemical synthesis time. The average crystallite size increases from 3.0 nm to 4.0 nm with a rise of
sonication time from 25 min to 100 min. The change of physical properties of ZnFe2O4 nanoparticles
with the increase of sonication time was observed. The prepared ZnFe2O4 nanoparticles show
superparamagnetic behavior. The prepared ZnFe2O4 nanoparticles (ZS25, ZS50, and ZS100) and
reduced graphene oxide (RGO) were embedded in a polyurethane resin (PUR) matrix as a shield
against electromagnetic pollution. The ultra-sonication method has been used for the preparation of
nanocomposites. The total shielding effectiveness (SET) value for the prepared nanocomposites was
studied at a thickness of 1 mm in the range of 8.2–12.4 GHz. The high attenuation constant (α) value
of the prepared ZS100-RGO-PUR nanocomposite as compared with other samples recommended
high absorption of electromagnetic waves. The existence of electric-magnetic nanofillers in the resin
matrix delivered the inclusive acts of magnetic loss, dielectric loss, appropriate attenuation constant,
and effective impedance matching. The synergistic effect of ZnFe2O4 and RGO in the PUR matrix led
to high interfacial polarization and, consequently, significant absorption of the electromagnetic waves.
The outcomes and methods also assure an inventive and competent approach to develop lightweight
and flexible polyurethane resin matrix-based nanocomposites, consisting of superparamagnetic zinc
ferrite nanoparticles and reduced graphene oxide as a shield against electromagnetic pollution.

Keywords: sonochemical synthesis; spinel ferrite; nanoparticles; nanocomposites; electromagnetic
interference shielding

1. Introduction

Recently, the rapid progress in electronic devices and information technology has
endorsed the widespread utilization of high-power electromagnetic waves in scientific, com-
mercial, civil, and military applications [1,2]. The abundant electromagnetic interference
(EMI) in the environment has influenced the working of electronic devices [3]. Exposure to
electromagnetic radiation has also influenced human health [4]. Electromagnetic shielding
or absorption has been demonstrated to be one of the operative approaches to address
electromagnetic pollution [5]. Therefore, electromagnetic shielding or absorption material
is one of the best procedures of environment and health defense [6]. A lightweight, flexible,
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and cost-efficient advanced nanocomposite shielding material is required to attenuate the
detrimental electromagnetic wave interference [7].

The EMI-shielding mechanism consists of mainly the two-loss factors: (i) reflection
loss and (ii) absorption loss. A single component, i.e., an only electric conductive material
or magnetic material, has less competence to pay both the mechanism of reflection and ab-
sorption. The absorption loss-dominant shielding material is more desirable because it can
prevent the second reflection pollution in comparison with the reflection-dominant mate-
rial. In recent years, researchers and academicians have comprehended that the intention of
nanocomposites consisting of both electric and magnetic constituents is a prudent choice to
cultivate proficient EMI-shielding material [8]. Such deliberate shielding material is antici-
pated to close the gap between permittivity and permeability. In recent times, carbon-based
materials, including carbon nanotubes, nanofibers, and reduced graphene oxide, have
established significant consideration for efficient electromagnetic interference shielding
material [9]. Reduced graphene oxide parades a high specific surface area with plenteous
functional groups and structural defects on its surface. Therefore, it can deliver copious
interfacial polarization and defect dipole polarization [10]. Reduced graphene oxide also
exhibits outstanding dielectric characteristics and higher electrical conductivity [11]. In
recent years, it is also perceived that the introduction of magnetic nanoparticles, including
spinel ferrite in the presence of reduced graphene oxide, can moderate its impedance
matching condition and robust attenuation capability of the shielding nanocomposite [12].
The microwave absorption characteristics also depend on the fraction of nanoparticles and
reduced graphene oxide [13]. Further, superparamagnetic spinel ferrite nanoparticles have
established a broad application due to their competence to hastily respond to an applied
magnetic field, which is concomitant with negligible remanence and coercivity [14,15]. For
that reason, there is an intensive research subject to develop superparamagnetic spinel
ferrite nanoparticles and further their application as electromagnetic interference shield-
ing [16]. A research group, Honglei Yuan et al. [17] reported the superparamagnetic
Fe3O4/MWCNTs nanocomposites displayed remarkably enhanced microwave absorption
characteristics in a high-frequency range (Ku-band). This research group provided an
approach to improve the resonance frequency break of the Snoek limit, which considerably
boosts the microwave absorption characteristics at high-frequency applications. Traditional
shielding materials, such as metals and metallic composites, have drawbacks, including
chemical resistance, weak flexibility, corrosion, heavy weight, and hard processibility, etc.
Polymer composites as an alternative candidate for EMI shielding can provide lightweight,
resistance to corrosion, flexibility, easy availability, processability, and cost-effectiveness.
ZnFe2O4 is one of the most investigated spinel ferrite systems. An interesting characteristic
of ZnFe2O4 is the possibility of controlling the magnetic properties with particle/crystallite
size. The variation of magnetic property from paramagnetic to superparamagnetic or ferri-
magnetic in ZnFe2O4 nanoparticles is attributed to cation redistribution at octahedral and
tetrahedral sites [18]. The mixed cation distribution in nanosized ZnFe2O4 spinel ferrite
also depends on the synthesis method [19]. Quite a lot of synthesis approaches have been
utilized for the preparation of nanoparticles and their nanocomposites [20]. Sonochemistry
is an innovative and potent synthesis methodology for the development of nanoparticles
and nanocomposites. This technique affords noteworthy rewards, such as well dispersion,
size reduction, particle de-agglomeration, homogenization, and emulsification, etc. [21].
The advantage of the sonochemical synthesis approach is cost-effectiveness, strong reaction
rate, controllable synthesis, narrow particle size distribution, high purity, and nonpollut-
ing [22,23]. Under extreme sonochemical synthesis conditions, nanomaterials with the
required size can be designed at controlled chemical reactions and physical changes [24].

In the present work, structural and physical properties of superparamagnetic ZnFe2O4
spinel ferrite nanoparticles have been controlled by the sonochemical synthesis approach
with increased sonochemical synthesis time. To the best of the authors’ knowledge, this
is the first report on superparamagnetic ZnFe2O4 spinel ferrite nanoparticles-reduced
graphene oxide (RGO)-polyurethane resin (PUR) nanocomposites as a shield against elec-
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tromagnetic pollution. RGO exhibited high specific surface area and excellent electrical con-
ductivity. However, non-magnetic RGO exhibited strong dielectric loss and also impedance
mismatching issues. Therefore, the combination of magnetic spinel ferrite with the electri-
cally conductive RGO can improve EMI-shielding performance with balanced impedance
matching conditions. Additionally, the EMI-shielding performance can be improved with
nanoparticles/nanostructures due to its excellent electromagnetic properties and high
surface area. The structural and electromagnetic properties/parameters of developed
superparamagnetic ZnFe2O4 nanoparticles and RGO embedded PUR-based nanocom-
posites were examined in detail. The confirmation of structural formation of prepared
nanoparticles and nanocomposites was carried out by X-ray diffractometry (XRD), infrared
spectrometry (FTIR), and Raman spectrometry. Microstructural features were studied by
transmission electron microscopy (TEM) and field emission-scanning electron spectroscopy
(FE-SEM). The sonochemical synthesis approach can also be used for the industrial-scale
formation of various spinel ferrite nanoparticles. The developed lightweight and flexi-
ble EMI-shielding nanocomposite can find potential application in the field of portable
electronics and wearable devices that need to be lightweight, thin, and flexible material.

2. Materials and Methods
2.1. Materials

Sodium hydroxide, zinc nitrate, and iron nitrate were acquired from Alfa Aesar GmbH
& Co KG, Germany. Potassium permanganate and graphite flakes were procured from
Sigma-Aldrich, Germany. Further, sodium nitrate was procured from Lach-Ner, the Czech
Republic. The reducing agent, Vitamin C (Livsane), for the reduction of graphene oxide,
was obtained from Dr. Kleine Pharma GmbH, Bielefeld, Germany. Polyurethane resin
(PUR) was selected as a polymer elastomeric casting matrix for very low shrinkage and
flexibility. PUR matrix was prepared by using Biresin® U1404 elastomeric casting resin
for mold-making from Sika Advanced Resins GmbH, Bad Urach, Germany, which has
a description as a basis: two-component PUR system; Component A: Biresin® U1404,
isocyanate prepolymer, colorless-transparent, unfilled; Component B: Biresin® U1404,
amine, reddish-transparent, unfilled; Component B: Biresin® U1434, amine, beige, filled.
It provides product benefits, such as insensitive to moisture, very soft, high elongation at
break, good tensile strength, and elasticity, with component B Biresin® U1404 for shore
hardness of A 40, with component B Biresin® U1434 for shore hardness of A 55, and very
low shrinkage. The PUR matrix for ZnFe2O4 and RGO as nanofillers was obtained in liquid
form with isocyanate prepolymer (component A, Biresin® U1404) and amine (component
B, Biresin® U1434) as a curing agent (hardener) with a density of 1.3 g/cm3; viscosity of
~3700 mPa-s; shore hardness of 55A; tear strength of 9 N/mm; tensile strength of 4 MPa;
elongation at break >600%; linear shrinkage internal <0.02%.

2.2. Sonochemical Preparation of ZnFe2O4 Nanoparticles

ZnFe2O4 nanoparticles were synthesized by the sonochemical synthesis technique.
First, 2.63 g Zn(NO3)2·6H2O and 7.56 g Fe(NO3)3·9H2O were mixed in 60 mL of deionized
water. Additionally, aqueous 1.6 M sodium hydroxide (NaOH) was mixed in the above
set solution with continuous stirring by a magnetic stirrer. Moreover, the attained mixed
solution was placed to high-intensity ultrasonic waves for 25 min, 50 min, and 100 min
with the use of the UZ SONOPULS HD 2070 Ultrasonic homogenizer (Berlin, Germany)
at 70 W power and 20 kHz frequency. The achieved product was washed by utilizing
deionized water and ethanol to eliminate unwanted chemical impurity. Finally, these
washed nanoparticles were dried at 60 ◦C for 18 h. The prepared ZnFe2O4 nanoparticles
were designated as ZS25, ZS50, and ZS100 according to their sonochemical synthesis time
of 25 min, 50 min, and 100 min, respectively.



Nanomaterials 2021, 11, 1112 4 of 25

2.3. Preparation of Reduced Graphene Oxide (RGO)

First, graphene oxide (GO) was prepared from natural graphite powders by utilizing
the Hummers’ method. Typically, the mixture comprised of graphite powder (1.5 g) and
sodium nitrate (1.5 g) was added slowly to concentrated H2SO4 (75 mL). The beaker,
which contains the above reaction mixture, was placed on an ice bath, and potassium
permanganate (9 g) was added gradually within 20 min, and this mixed solution was
stirred further for 30 min under an ice bath (temperature in the range of 0–5 ◦C). This
solution was stirred for an additional 48 h at room temperature. Afterward, 138 mL of
deionized water was gradually added into the above mixture and stirred for 10 min. In
this achieved mixture, 420 mL warm deionized water was then poured and kept under a
continuous strong stirring. Moreover, H2O2 (30 mL) was mixed into the above reaction
mixture to eliminate the remaining KMnO4 and stirred until the color of the product
transformed into bright yellow, which signaled the formation of graphite oxide from
graphite. Finally, the obtained bright yellow product suspension was centrifuged and
washed with ethanol and deionized water until the pH ~7 was reached. The obtained
product was annealed at 60 ◦C in a vacuum oven for 24 h.

Vitamin C (10 g) was utilized as a reducing agent in the development of reduced
graphene oxide (RGO) from 3 g of graphene oxide (GO). For this, the above-prepared GO
was mixed in deionized water and additionally placed to high-intensity ultrasonic waves
for 15 min with the use of UZ SONOPULS HD 2070 Ultrasonic homogenizer. Then, in this
attained solution, vitamin C was added gradually, and then the obtained suspension was
continuously stirred for the time of 3 h at temperature 90 ◦C. Additionally, the achieved
product suspension was centrifuged and washed with ethanol and deionized water. Finally,
the washed product was dried in a vacuum oven at 60 ◦C for 15 h.

2.4. Ultrasonic Preparation of Nanocomposites

Nanocomposites of polyurethane resin (PUR) (50 wt.%) with nanofillers (40 wt.% zinc
ferrite nanoparticles and 10 wt.% RGO) were prepared. For the PUR matrix, component A
and component B were used in the ratio of 100–50. For the preparation of nanocomposites,
in a 25-mL beaker, isocyanate prepolymer (component A, Biresin U1404) were mixed
with nanofillers (ZnFe2O4 (90%) + RGO (10%)) by using a EURO-ST-D mechanical stirrer
for 30 min and then sonicated by using a UP 400S ultra probe (Hielscher Ultrasonics
GmbH, Teltow, Germany) (frequency: 24 kHz, power: 400 W) for 30 min in an ice bath.
Further, amine (component B) as a curing agent was mixed to the above mixture and then
sonicated at another 10 min by using a UP 400S ultra probe (frequency: 24 kHz, power:
400 W). Finally, the prepared sample was closed and retained in a drying oven, where the
composite material was cured at 25 ◦C for 5 days. Three PUR-based nanocomposite using
zinc ferrite nanoparticles (ZS25, ZS50, or ZS100) and RGO as nanofillers, namely, (i) ZS25-
RGO-PUR, (ii) ZS50-RGO-PUR, and (iii) ZS100-RGO-PUR, were prepared. Additionally,
rectangle-shaped samples 22.86 × 10.16 × 1 mm3 were produced by cast molding.

2.5. Characterization Techniques

The sonochemically prepared zinc ferrite nanoparticles X-ray Diffraction (XRD) was
performed using an X-ray powder diffraction from Rigaku Corporation, Tokyo, Japan.
The Raman spectroscopy of PUR-based nanocomposites was performed on a Raman spec-
trometer of Thermo Fisher Scientific, Waltham, MA, USA. XPS study of graphene oxide
and reduced graphene oxide was performed on an X-ray photoelectron spectroscope of
Kratos Analytical Ltd. (Manchester, UK). The FTIR spectroscopy of ZnFe2O4 nanoparti-
cles and PUR-based nanocomposites was performed on Nicolet 6700 (Thermo Scientific,
Waltham, MA, USA). The high-resolution transmission electron microscope (JEOL JEM
2100) (JEOL, Peabody, MA, USA) was utilized to investigate the morphology and lattice
fringes of ZnFe2O4 nanoparticles. The surface morphology and structure of the PUR
nanocomposites were investigated with an FE-SEM of FEI NanoSEM450 (The Netherland,
FEI Company). Magnetic hysteresis curves of sonochemically prepared superparamagnetic
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ZnFe2O4 nanoparticles were studied utilizing a VSM 7407, Lake Shore, Westerville, OH,
USA. ZFC and FC temperature-dependent magnetization study of the sonochemically
prepared zinc ferrite nanoparticles were investigated using a SQUID magnetometer of
Quantum Design MPMS XL-7. The electromagnetic interference shielding effectiveness
of the developed PUR-based nanocomposite with zinc ferrite nanoparticles and RGO as
nanofillers was studied by using a vector network analyzer (Agilent N5230A, Agilent
Technologies, Santa Clara, CA, USA) in 8.2–12.4 GHz (X band).

3. Results
3.1. X-ray Diffraction Study

The X-ray diffraction pattern of the sonochemically synthesized ZnFe2O4 spinel ferrite
nanoparticles at sonication times of 25 min, 50 min, and 100 min is displayed in Figure 1.
The observed diffraction peaks correspond to the reflection of (220), (311), (222), (400), (331),
(422), (511), (440), (531), and (442) planes of an Fd3m spinel crystal structure. Additionally,
there is no presence of an impurity peak, which designates the high purity of spinel ferrite
material. It is worth noting that as the sonication synthesis time increased, the intensity of
diffraction peaks increased, and the width of the diffraction peak decreased, which suggests
grain growth with an increase of sonication time. The average crystallite size of synthesized
ZnFe2O4 nanoparticles was studied by utilizing the Debye–Scherrer equation [25]:

D =
(0.9) λ
β cos θ

(1)
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Figure 1. X-ray diffraction pattern of sonochemically prepared ZnFe2O4 spinel ferrite nanoparticles. 
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Figure 1. X-ray diffraction pattern of sonochemically prepared ZnFe2O4 spinel ferrite nanoparticles.

Herein, λ, β, and θ are the wavelength of X-ray, the full-width at half maximum
(FWHM), and the Bragg angle, respectively. The average crystallite size increases from
3.0 nm to 4.0 nm with an increase in sonication time, as shown in Table 1. The growth of
spinel ferrite nanocrystals was associated with an increase in ultrasonic time [26].
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Table 1. Crystallite size, Lattice Parameter, X-ray Density, and Ionic Radii (rA, rB) for the prepared ZnFe2O4 spinel ferrite
nanoparticles by the sonochemical synthesis approach.

Sample Crystallite Size (nm) Lattice Parameter, a (Å) X-ray Density dx (g/cm3) Ionic Radii rA (Å) Ionic Radii rB (Å)

ZS 25 3.0 7.219 8.51 0.2757 1.4026

ZS 50 3.6 7.245 8.42 0.2816 1.4087

ZS 100 4.0 7.248 8.41 0.2822 1.4093

The lattice parameter was determined by utilizing the following relation [25]:

a2 =
λ2
(

h2 + k2 + l2
)1/2

4 sin2 θ
(2)

Herein, θ is the Bragg angle, and (hkl) are the Miller indices of the planes. The lattice
parameter increases from 7.219 Å to 7.248 Å with an increase in sonication time from
25 min to 100 min, as shown in Table 1. The observed increase in the lattice constant
with sonication time follows Vegard’s law [27]. Generally, the lattice constant in the case
of spinel ferrite correlates with microstructure, ordering/reordering of cations, valence
states, and defects, etc. [28]. In the present work, the variation in the lattice constant can be
attributed to changes in microstructure and ultrasonic-activated ordering/reordering of
cations in ZnFe2O4 spinel ferrite nanoparticles.

The X-ray density (dx) of prepared spinel ferrite nanoparticles is evaluated by the
following relation [25]:

dx =
ZM
NV

(3)

Herein, Z, M, N, and V are the number of the nearest neighbor, the molecular weight,
the Avogadro number, and the volume of the unit cell (V = a3), respectively. The evaluated
value of the X-ray density was 8.51 g/cm3, 8.42 g/cm3, and 8.41 g/cm3 for ZS25, ZS50,
and ZS100 samples, respectively (Table 1). Thus, an increase of sonication time to 25 min,
50 min, and 100 min decreased the density of the prepared spinel ferrite nanoparticles.

Additionally, structural parameters, such as ionic radii, hopping length for the oc-
tahedral and tetrahedral site, tetrahedral and octahedral bond length, tetrahedral edge,
and the shared and unshared octahedral edge, for prepared ZnFe2O4 nanoparticles were
assessed [29,30]. The variation in these parameters with sonication times of 25 min, 50 min,
and 100 min was noticed, as mentioned in Tables 1 and 2. The increase in ionic radii,
hopping length for the octahedral and tetrahedral site, tetrahedral and octahedral bond
length, tetrahedral edge, and the shared and unshared octahedral edge for prepared
ZnFe2O4 nanoparticles with an increase of sonication time was noticed. Microstructure
and ultrasonic-activated ordering/reordering of cations in ZnFe2O4 nanoparticles was
associated with an increase in sonication time, which can affect the physical properties of
the material [31].

Table 2. Structural parameters for prepared ZnFe2O4 nanoparticles synthesized by sonochemical approach: hopping length
for the octahedral and tetrahedral site, tetrahedral and octahedral bond length, tetrahedral edge, and the shared and
unshared octahedral edge.

Sample
Hopping Length
for Tetrahedral

Site dA (Å)

Hopping Length
for Octahedral

Site dB (Å)

Tetrahedral
Bond Length,

dAx (Å)

Octahedral
Bond Length,

dBx (Å)

Tetrahedral
Edge, dAxE (Å)

Shared
Octahedral

Edge, dBxE (Å)

Unshared
Octahedral

Edge, dBxEU (Å)

ZS 25 3.1263 2.5526 1.6757 1.7424 2.7364 2.3688 2.5559

ZS 50 3.1374 2.5617 1.6816 1.7486 2.7461 2.3772 2.5650

ZS 100 3.1384 2.5625 1.6822 1.7491 2.7470 2.3780 2.5658



Nanomaterials 2021, 11, 1112 7 of 25

3.2. TEM Study

TEM measurements were carried out to investigate the structural features of prepared
ZnFe2O4 spinel ferrite nanoparticles. Figure 2 represents TEM and HRTEM images of
prepared nanoparticles, namely ZS25, ZS50, and ZS100. The TEM image of ZS25 is depicted
in Figure 2a, which shows particles in the range of 2–4.5 nm (Figure S1 in supplementary
material). The HRTEM image of ZS25 is shown in Figure 2b, which displays the lattice
of (220) planes (d spacing 0.29 nm), (311) planes (d spacing 0.25 nm), and (400) planes
(d spacing 0.21 nm) of ZnFe2O4 spinel ferrite [32]. Further, Figure 2c depicts a low-
resolution TEM image of the ZS50 sample, which illustrated that the product consisted
of particles with sizes of 2.5–5 nm. Figure 2d shows lattice fringes with an interplanar
spacing of 0.29 nm, which is consistent with (220) planes of spinel ferrite. Additionally,
the TEM image of ZS100 is depicted in Figure 2e, which demonstrated that the prepared
nanoparticles exhibited size 3–12 nm. Figure 2f depicts the HRTEM image of ZS100. The
investigation of the HRTEM image depicts the interplanar spacing of 0.25 nm, 0.21 nm,
and 0.17 nm of lattice fringes corresponding to (311), (400), and (422) plane of ZnFe2O4
spinel ferrite.
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3.3. FE-SEM Study

Figure 3 depicts the typical SEM image of RGO and prepared polyurethane resin-
based nanocomposites. Wrinkled and curled graphene sheets can be noticed in Figure 3a.
Further, the presence of RGO and prepared ZnFe2O4 nanoparticles in polyurethane resin
can be noticed in SEM images of the surfaces of the PUR-based nanocomposites, as shown
in Figure 3b–d. The increase in the thickness of RGO may be due to the agglomeration of
RGO during the processing and formation of polymer nanocomposite [33].
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Figure 3. FE-SEM image of RGO (a), and FE-SEM image of the fracture surface of ZS100-RGO-PUR (b), ZS50-RGO-PUR (c),
and ZS25-RGO-PUR (d).

3.4. X-ray Photoelectron Spectroscopy

The prepared GO and RGO were examined by X-ray photoelectron spectroscopy (XPS).
Figure 4 shows the XPS spectra of prepared graphene oxide (GO) and reduced graphene
oxide (RGO). Figure 4a,c signifies the survey scan spectra of GO and RGO, which display
the existence of carbon and oxygen. Figure 4b depicts the high-resolution XPS spectra of
the C 1s region for GO. The deconvoluted C 1s peak displays the peak binding energy
of 284.1 eV, 284.7 eV, 286.5 eV, 288.4 eV, and 290.0 eV, which resembles C=C (sp2 carbon),
C-C (sp3 carbon), C-O, C=O, and O-C=O bonds, respectively [34]. Additionally, Figure 4d
denotes the high-resolution XPS spectra of C 1s for RGO. It displays the peak binding
energy of 284.4 eV, 285.9 eV, 287.7 eV, 289.1 eV, and 290.6 eV related to C=C, C-OH, C=O,
O-C=O, and π-π* satellite bonds, respectively [35]. The XPS investigation demonstrated
that after reduction treatment, the functional group of GO is reduced, and the sp3 carbon is
altered to sp2 carbon.
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3.5. Raman Spectroscopy

The Raman spectroscopy examined the structural properties of synthesized nanopar-
ticles and PUR-based nanocomposites. Figure 5 shows the Raman spectra of prepared
nanoparticles, namely ZS25, ZS50, ZS100, and nanocomposites designated as ZS25-RGO-
PUR, ZS50-RGO-PUR, and ZS100-RGO-PUR. Two characteristics feature Raman peaks
of reduced graphene oxide, located at 1345 cm−1 (D band) and 1556 cm−1 (G band). The
observed D band at 1345 cm−1 is ascribed to the existence of sp3 defects within the reduced
graphene oxide sheets, whereas the G band at 1556 cm−1 is attributed to the E2g phonon
mode of in-plane sp2 carbon atoms [36]. Further, the observed Raman bands at ~240 cm−1,
~330–340 cm−1, ~470–490 cm−1, ~570 cm−1, and ~650 cm−1 were ascribed to T2g(1), Eg,
T2g(2), T2g(3), and A1g modes for spinel ferrite ZnFe2O4 nanoparticles [37].
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3.6. FTIR Spectroscopy

FTIR spectroscopy is an outstanding complementary characterization tool for Raman
spectroscopy characterization of nanocomposites. Figure 6a represents the FTIR spectra
of prepared ZnFe2O4 nanoparticles. Two absorption bands at ~545 cm−1 and ~385 cm−1

were noted. The absorption band ~545 cm−1 can be ascribed to the tetrahedral Zn2+

(Zn-O) stretching vibration for the ZnFe2O4 spinel ferrite crystal structure. The band
~385 cm−1 can be assigned to the octahedral Fe3+ (Fe-O) stretching vibration [38]. Ad-
ditionally, Figure 6b displays the FTIR spectra of pure polyurethane resin (PUR) and its
nanocomposites. The presence of an absorption band ~545 cm−1 confirms the existence of
ZnFe2O4 in the developed nanocomposite. Furthermore, Figure 6b demonstrated other ab-
sorption bands related to main characteristics peaks for polyurethane, which was observed
at ~3310 cm−1, 2966 cm−1, 2868 cm−1, 1728 cm−1, 1640 cm−1, 1534 cm−1, 1223 cm−1, and
1094 cm−1. The absorption band ~3310 cm−1 can be ascribed to the stretching vibration
of the N-H group [39]. The bands at 2966 cm−1 and 2868 cm−1 can be attributed to the
non-symmetric and symmetric stretching vibration of CH2. Further, the absorption bands
at 1728 cm−1, 1223 cm−1, and 1094 cm−1 can be attributed to carbonyl (C=O), aromatic
C-O stretching vibration, and C-O-C non-symmetric stretching vibration. Additionally,
the band ~1640 cm−1 can be ascribed as the abundance of amide I bands [40]. In addition,
the absorption band at ~1534 cm−1 can be associated with the N-H bonds of the urethane
group [41]. In combination with Raman and FTIR spectroscopy results, the existence of
spinel ferrite ZnFe2O4 nanoparticles and reduced graphene oxide in the polyurethane
matrix were verified.
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prepared spinel ferrite nanoparticles exhibit zero remanent and zero coercivity, which is 
associated with superparamagnetic characteristics. The saturation magnetization value at 
the applied magnetic field of 800 kA/m was 0.78 Am2/kg, 1.05 Am2/kg, and 1.33 Am2/kg 
for ZS25, ZS50, and ZS100, respectively [42]. The reduced saturation magnetization of 
ZS25 is associated with the existence of a magnetically dead or anti-ferromagnetic layer 
on the border of the nanoparticle [43]. The observation of superparamagnetism or ferri-
magnetism characteristics at room temperature in nanosized ZnFe2O4 spinel ferrite has 
been attributed to cation redistribution between Zn2+ ions at the tetrahedral sites and Fe3+ 
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3.7. Magnetic Properties

The magnetic characteristics of sonochemically synthesized spinel ferrite ZnFe2O4
nanoparticles were examined. Figure 7a depicts magnetic hysteresis curves of synthesized
ZnFe2O4 nanoparticles at different sonication times of 25 min, 50 min, and 100 min. The
prepared spinel ferrite nanoparticles exhibit zero remanent and zero coercivity, which is
associated with superparamagnetic characteristics. The saturation magnetization value at
the applied magnetic field of 800 kA/m was 0.78 Am2/kg, 1.05 Am2/kg, and 1.33 Am2/kg
for ZS25, ZS50, and ZS100, respectively [42]. The reduced saturation magnetization of
ZS25 is associated with the existence of a magnetically dead or anti-ferromagnetic layer
on the border of the nanoparticle [43]. The observation of superparamagnetism or ferri-
magnetism characteristics at room temperature in nanosized ZnFe2O4 spinel ferrite has
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been attributed to cation redistribution between Zn2+ ions at the tetrahedral sites and Fe3+

ions at the octahedral sites [44,45]. Further, Figure 7b depicts magnetic hysteresis curves of
prepared nanoparticle sample ZS25 at various temperatures 2 K, 77 K, and 300 K. At room
temperature (300 K) and 77 K, the coercivity and remanent are zero for the ZS25 sample;
however, it exhibits coercivity (67 kA/m) and remanent value (5 Am2/kg) at 2 K, which
indicates superparamagnetic behavior of prepared ZS25 sample [46,47].
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Figure 7. (a) M-H plots obtained at 300 K for ZS25, ZS50, and ZS100 samples; (b) M-H plots obtained
at 2 K, 77 K, and 300 K for the ZS25 sample; (c) FC-ZFC curves for the ZS25 sample.

The temperature dependences of zero-field cooled (ZFC) and field-cooled (FC) of
prepared nanoparticle sample ZS25 were also measured in wide temperature interval
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2–300 K for magnetic field 7.96 kA/m. The ZFC and FC investigation is utilized to define
the blocking temperature. Figure 7c displays the irreversibility of ZFC and FC curves
and the occurrence of a maximum in ZFC curves. ZFC-FC curve display irreversibility
characteristic due to the blocking/freezing and unblocking mechanism of the magnetic
moment of magnetic nanoparticles [48]. The rise of ZFC magnetization with temperature
is associated with an unblocking progression [49]. The ZFC and FC measurements for
the ZS25 sample display the blocking temperature of 20 K. The prepared ZS25 sample
displays ferromagnetic behavior below 20 K and superparamagnetic above 20 K. Above
the blocking temperature, the magnetic moment of nanoparticles freely fluctuates in the
applied magnetic field, which leads to superparamagnetism.

Nevertheless, below the blocking temperature, the magnetic moment of each nanopar-
ticle is blocked/freeze in the applied magnetic field direction, and the magnetic hysteresis
with coercivity value 67 kA/m was noticed, as presented in Figure 7b. The blocking temper-
ature depends on various factors such as effective anisotropy constant, magnetic coupling,
particle size, applied magnetic field, etc. [50,51]. A research group, Qi Chen et al. [52],
observed that the blocking temperature increases with the increase in particle size of
MgFe2O4 nanoparticles. Further, Chao Liu et al. [53] reported the increase in the blocking
temperature from 20 to 250 K with the increase in the size of the MnFe2O4 nanoparticles
from 4.4 to 13.5 nm.

It is well-known that the saturation magnetization (Ms) and coercivity (Hc) of the
electromagnetic wave absorber material are the most important factor to influence the
magnetic loss of the electromagnetic wave shielding material [54]. In general, for the
application of electromagnetic interference shielding, an initial permeability (µi) signifies
strong magnetic loss capacity of electromagnetic wave absorber material, which can be
expressed as [55]:

µi =
M2

S
akHcMS + bλξ

(4)

where a and b are constants, which have a dependence on the material. In the above
relation, λ, ξ, and k are the magnetostriction constant, elastic strain parameter of the crystal,
and proportionality coefficient, respectively [56]. The above equation signifies that the
lower Hc and higher Ms are supportive of the value of µi increasing and, consequently,
the performance of electromagnetic wave absorption enhancing [57]. Superparamagnetic
nanoparticles that exhibited zero coercivity and higher saturation magnetization could
be high-performance electromagnetic interference shielding material. In the VSM study,
it is noticed the ZS100 sample exhibited a high value of magnetization as compared to
ZS25 and ZS100; therefore, the permeability of nanocomposites containing ZS100 would
be higher. Further, this suggests that a nanocomposite based on ZS100 could have higher
electromagnetic shielding performance as compared to ZS25 and ZS50.

3.8. Electromagnetic Interference Shielding Effectiveness (EMI SE) Study

The total electromagnetic interference (EMI) shielding effectiveness (SET) can be
ascribed by the logarithmic ratio between the incoming power (Pin) and outgoing power
(Pout) of electromagnetic radiation [58]:

SET = 10 log(Pin/Pout) = SEA + SER + SEMR (5)

Herein, SEA, SER, SEMR, and SET are the absorption, reflection, multiple reflections,
and total EMI shielding, respectively. In general, SEMR can be ignored when SET is larger
than 10 dB [58]. Hence, SET can be expressed as:

SET = SEA + SER (6)
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SEA in dB can be expressed as [4]:

SEA = −8.68t

√
(fµrσT)

2
(7)

where f is the frequency of the electromagnetic wave; σT is the total conductivity (S/cm)
of shielding material; (µr) is the complex permeability of shielding material. It can be
noticed that SEA is directly proportional to the conductivity (σT) and permeability (µr) of
the shielding material. Further, SER can be expressed as [4]:

SER = −10 log10

(
σT

µr

)
(8)

It can be noticed from the above expression that SER is the function of the ratio of σT
and µr. Furthermore, SEMR can be expressed as [4]:

SEMR = 20 log10

(
1− 10

SEA
10

)
(9)

SEMR can be neglected at SEA ≥ 10 dB.
Figure 8 depicts the EMI-shielding performance of prepared nanocomposites based

on the polyurethane matrix with sonochemically prepared superparamagnetic ZnFe2O4
nanoparticles and RGO as nanofillers. The maximum total shielding effectiveness (SET) value
for prepared nanocomposites of thickness 1 mm in the frequency range of 8.2–12.4 GHz
was 12.7 dB, 13.8 dB, and 16.7 dB, for ZS25-RGO-PUR, ZS50-RGO-PUR, and ZS100-RGO-
PUR, respectively. The EMI SET value increases with an increase in the size of utilized
superparamagnetic ZnFe2O4 spinel ferrite nanoparticles in developed nanocomposites. The
maximum SEA value was 3.6 dB, 5.9 dB, and 10.2 dB for prepared nanocomposites ZS25-
RGO-PUR, ZS50-RGO-PUR, and ZS100-RGO-PUR, respectively. The higher SEA value of
the ZS100-RGO-PUR sample indicates that this nanocomposite exhibits higher electrical
conductivity and higher magnetic permeability. Additionally, the maximum SER value was
noticed to be 10.7 dB, 8.7 dB, and 6.7 dB for developed composite material ZS25-RGO-PUR,
ZS50-RGO-PUR, and ZS100-RGO-PUR, respectively.

In recent years, a research group, Xiaogu Huang et al. [59], reported the minimum
reflection loss of −3.8 dB, −5 dB, and −8.1 dB for ZnFe2O4 nanoparticles, nanorods,
nanofibers, respectively. Another research group, Chang Sun et al. [60], noticed a minimum
reflection loss value of −10.4 dB at 17.7 GHz with a matching thickness of 16.7 mm for
LiFeO2/ZnFe2O4 composite. Further, Ruiwen Shu et al. [61] noticed the value of the mini-
mum reflection loss of −12.0 dB with a thickness of 4.5 mm for hybrid nanocomposites of
reduced graphene oxide/zinc ferrite fabricated by a facile one-pot hydrothermal strategy.
Furthermore, Junsheng Xue et al. [62] reported microwave absorption characteristics of
ZnFe2O4 nanoparticles of 130 nm and noticed minimum reflection loss of ZnFe2O4/paraffin
of −23.4 dB at 17.9 GHz for higher thickness around 9 mm. Moreover, Wei Ma et al. [63]
reported that the reduced graphene oxide/zinc ferrite/nickel nanohybrids exhibited the re-
flection loss (RL) of −22.57 dB at 4.21 GHz with a thickness of 2.5 mm. The electromagnetic
interference shielding or microwave absorption characteristics of ZnFe2O4 nanoparticles
depend on various factors, including size, morphology, compositions, the thickness of the
sample, and composite matrix, etc. [64–66].
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3.9. Electromagnetic Properties and Parameters

To elaborate more on the shielding characteristics of prepared superparamagnetic
ZnFe2O4 and RGO-based PUR nanocomposites, complex permittivity and permeability of
the nanocomposites were investigated. The real permittivity (ε′) implies the storage ability
of electrical energy, while the imaginary permittivity (ε′ ′) signifies energy dissipation.
Figure 9a represents the frequency dependence real permittivity for developed nanocom-
posites in the 8.2–12.4 GHz frequency range. The value of ε′ is in the ranges of 6.8 to 7.3,
7.5 to 7.9, 8.4 to 9.1 for developed nanocomposites ZS25-RGO-PUR, ZS50-RGO-PUR, and
ZS100-RGO-PUR, respectively. Figure 9b represents the frequency dependence imaginary
permittivity for nanocomposites in the 8.2–12.4 GHz frequency range. The value of ε′ ′ is
in the range of 0.35 to 0.74, 0.55 to 0.88, 0.65 to 1.31 for ZS25-RGO-PUR, ZS50-RGO-PUR,
and ZS100-RGO-PUR, respectively. The complex permittivity is the result of the polariz-
ability of the nanocomposite material associated with the dipolar and electric polarization,
initiated by an EM wave [5,67]. The input to the space charge polarization acts because
of the heterogeneity of the nanocomposite material. In heterogeneous dielectric materials,
there is an accumulation of virtual charges on the interfaces of two mediums with different
dielectric constants and conductivities, which lead to interfacial polarization and is called
Maxwell–Wagner polarization [68,69]. It can be observed that the values of ε′ and ε′ ′ are
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increased with the increase of the size of superparamagnetic ZnFe2O4 nanoparticles in
prepared nanocomposites.
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The relation between electrical conductivity (σAC) and imaginary permittivity (ε′ ′)
can be stated as [70]:

σAC = εoε′′ 2πf (10)

Herein, εo is the dielectric constant of free space; f is the frequency of the electro-
magnetic wave. The above relation signifies that the electrical conductivity will increase
with an increase in the value of imaginary permittivity. Therefore, the enhanced value of
the complex permittivity can be associated with the increase in the electrical conductivity
of the prepared nanocomposites with an increase in the size of embedded superparam-
agnetic ferrite nanoparticles. Figure 9c represents the change in electrical conductivity
with the frequency of prepared nanocomposites. The electrical conductivity is in the
range of 1.9 × 10−3 to 3.9 × 10−3 S/cm, 2.5 × 10−3 to 4.3 × 10−3 S/cm, 2.9 × 10−3 to
7.5 × 10−3 S/cm for ZS25-RGO-PUR, ZS50-RGO-PUR, and ZS100-RGO-PUR, respectively.

Further, in reported literature by other researchers, the Debye theory is generally
utilized to clarify the relaxation process of dipoles [71,72]. According to the Debye theory
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for dielectric loss characteristics, the real permittivity (ε′) and imaginary permittivity (ε′ ′)
can be written as [73]:

ε′ = ε∞ + εs−ε∞
1+(ωτ)2

ε′′ = ε
′′
relax + ε

′′
σ = εs−ε∞

1+(ωτ)2ωτ+
σ
ωεo

(11)

Herein, εs and ε∞ are the static and infinite permittivity; ω = 2πf is the angular
frequency; τ is the relaxation time; σ is the conductivity. It can be seen from the above
relation that the ε′ and ε′ ′ are the functions ofωτ. Hence, both the ε′ and ε′ ′ are mutually
dependent on one another. A relationship between ε′ and ε′ ′ can be inferred after ignoring
the contribution of σ and by eliminatingωτ [74]:(

ε′ − εs + ε∞

2

)2
+ (ε′′ )2 =

(
εs − ε∞

2

)2
(12)

From the above relation, it is easy to recognize that the curves of ε′ and ε′ ′ would be a
semi-circle, which is known as the Cole–Cole semicircle [75].

Figure 9d depicts the Cole–Cole plots for the developed PUR-based nanocomposites.
In general, the relaxation is associated with a delay in polarization concerning the change in
the electrical field. Some obvious Cole–Cole semicircles can be noticed in Figure 9d, which
signifies that the relaxation contributed to the dielectric loss. Additionally, one Cole–Cole
semicircle represents a Debye dipolar relaxation, and the existence of more semicircles is
attributed to multiple relaxation processes [76]. These other semicircles are associated with
Maxwell–Wagner relaxation, electron/ion polarization, and interfacial polarization [77].
The multiple dielectric losses were responsible for the improvement of the absorption
characteristics of PUR-based nanocomposites.

It is well-known that the real permeability (µ′) represents the storage ability of mag-
netic energy, and the imaginary permeability (µ′ ′) signifies the magnetic loss. Figure 10a
represents the frequency dependence of the real permeability (µ′) of PUR-based nanocom-
posites. The µ′ is in the range of 0.86 to 0.96, 0.91 to 0.99, and 0.90 to 1.09 for nanocomposites
ZS25-RGO-PUR, ZS50-RGO-PUR, and ZS100-RGO-PUR, respectively. The value of real
permeability (µ′) was increased with an increase of grain size of utilized superparam-
agnetic ZnFe2O4 spinel ferrite nanoparticles. Further, the value of µ′ ′ is in the range of
−0.06 to 0.03, −0.01 to 0.07, and 0.03 to 0.19 for the prepared composites ZS25-RGO-PUR,
ZS50-RGO-PUR, and ZS100-RGO-PUR, respectively, as shown in Figure 10b. Remarkably,
it is noticed that the µ′ ′ exhibited negative value also for some PUR-based nanocomposites,
which is associated with the motion of charges [78].
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Additionally, the Globus equation is expressed as [79]:

µ ∝
(

M2
sD/K1

)1/2
(13)

This equation signifies that to get a higher complex permeability, a higher saturation
magnetization (MS), larger grain size (D), and smaller magnetocrystalline anisotropy
constant (K1) are needed. The increased magnetization and larger grain size of the ZS100
sample may add to the larger permeability for prepared ZS100-RGO-PUR nanocomposites,
as compared with ZS25-RGO-PUR and ZS50-RGO-PUR nanocomposites.

Further, based on the following relations [80]:

tan δε = ε
′ ′

ε
′

tan δµ = µ′′

µ′
(14)

and utilizing electromagnetic parameters for ZS25-RGO-PUR, ZS50-RGO-PUR, and ZS100-
RGO-PUR nanocomposites, the dielectric loss tangent (tanδε) and magnetic loss tangent
(tanδµ) were evaluated. Figure 10c represents dielectric loss tangent vs. frequency curves
for prepared PUR-based nanocomposites. The dielectric loss tangent (tanδε) of samples
ZS25-RGO-PUR, ZS50-RGO-PUR, and ZS100-RGO-PUR, fluctuated with an increase of
frequency of electromagnetic wave between 0.05 to 0.10, 0.06 to 0.11, and 0.07 to 0.15,
respectively. Additionally, the dielectric loss is related to dipole polarization and interfacial
polarization at higher frequencies [81]. It can be also noticed that the dielectric loss (ε′ ′)
value of the ZS100-RGO-PUR sample is much higher than the other two samples (i.e.,
ZS25-RGO-PUR, and ZS50-RGO-PUR). The higher dielectric loss in the ZS100-RGO-PUR
sample is associated with enhanced electrical conductivity and dielectric constant induced
by micro-currents and polarization in nanocomposites [82].

The magnetic loss tangent variation with the frequency of an electromagnetic wave of
prepared PUR-based nanocomposites is presented in Figure 10d. It can be perceived that
the magnetic loss tangent fluctuated between −0.06 to 0.03, −0.01 to 0.07, and 0.03 to 0.19
for samples ZS25-RGO-PUR, ZS50-RGO-PUR, and ZS100-RGO-PUR, respectively.

It is well-known that natural resonance, exchange resonance, and eddy current are the
main contributors to the magnetic loss of nanoparticles [83]. The eddy current loss can be
stated by the following relation when the size of magnetic nanoparticle (D) is smaller than
the skin depth (δ) [84]:

µ′′

µ′
α
µ′fD
ρ

(15)

where f is the electromagnetic wave frequency; ρ is the electric resistivity of the nanopar-
ticles. Based on this above relation, Co = f−1(µ′)−2µ′ ′ should be constant, if the magnetic
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loss is mainly contributed from the eddy current loss. It can be seen in Figure 11a that the
value Co is not constant for all the prepared PUR-based nanocomposites. It signifies that
the eddy current loss would not be a dominant contributor to magnetic loss.
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Besides dielectric and magnetic losses, skin depth (δ) is another important factor that
stimulates the absorption of electromagnetic waves. Skin depth states the distance at which
the field drops to 1/e of the incident value and stated as [85]:

δ = 1/
√
πfµσ (16)

Herein, f is the frequency; σ is the electrical conductivity; µ is the permeability. This
relation signifies that skin depth reduces with an increase in frequency, permeability, and
conductivity. Figure 11b depicts the frequency dependence variation of skin depth of the
prepared PUR-based nanocomposites. A smaller skin depth states a stronger absorption
capacity [86]. The skin depth of samples ZS25-RGO-PUR, ZS50-RGO-PUR, and ZS100-
RGO-PUR fluctuated with an increase in the frequency of electromagnetic waves between
0.08 to 0.14 mm, 0.08 to 0.12 mm, and 0.06 to 0.11 mm, respectively. The prepared ZS100-
RGO-PUR nanocomposite exhibits smaller skin depth and, therefore, stronger absorption.

The attenuation constant (α) is an important factor that governs the electromagnetic
wave absorption capabilities of shielding nanocomposites. It can be assessed by the
following relation [87]:

α =

√
2πf
c

√
(µ′′ ε′′ − µ′ε′) +

√
(µ′ε′′ + µ′′ ε′)2 + (µ′′ ε′′ − µ′ε′)2 (17)



Nanomaterials 2021, 11, 1112 20 of 25

Figure 11c displays the frequency dependence variation of the attenuation constant
(α) of prepared PUR-based nanocomposites. The high attenuation constant (α) value of the
prepared ZS100-RGO-PUR nanocomposite compared with other samples demonstrated
high absorption of electromagnetic waves. Another key factor that governs electromagnetic
wave absorption is impedance matching. It is stated by the modulus of the normalized char-
acteristic impedance (Z), which can be calculated by utilizing the following relation [88]:

Z = |Z1/Zo| (18)

where Z1 = Zo
√
µr/εr; Zo is the impedance in free space; εr is the value of complex per-

mittivity; µr is the value of complex permeability. Figure 11d shows the variation of the
impedance matching coefficient for prepared PUR-based nanocomposites with frequency.
The values of Z are below one, and the ZS100-RGO-PUR nanocomposite has a lower Z value
compared to other samples. A high attenuation constant and moderate Z value of ZS100-
RGO-PUR nanocomposite provided the high value of EMI-shielding effectiveness [89].
The schematic illustration of the electromagnetic interference shielding mechanism in the
prepared nanocomposite is shown in Figure 12. When electromagnetic waves interact at the
surface of the prepared nanocomposite, a part of it is reflected, another part is absorbed, and
the remaining part has multiple reflections and scattering [90]. The reflection is associated
with moving charge carriers interacted with electromagnetic waves [91]. The absorption
signifies the dissipation of energy of the electromagnetic waves due to the interaction of
electromagnetic waves with the electric and magnetic dipoles [92]. The multiple reflections
are reflections at different surfaces or interfaces present due to inhomogeneity within the
prepared nanocomposite. The prepared nanocomposites consisted of conductive RGO
sheets and ZnFe2O4 magnetic nanoparticles not only improve impedance matching but also
creates a micro-current network and attains interfacial polarization [93]. The appropriate
conductivity of RGO sheets gifted the prepared nanocomposites exhibited a moderate
conductivity loss. Residual functional groups and defects in RGO sheets and ZnFe2O4 origi-
nated dipole polarization and defect polarization [94]. The interaction of electromagnetic
waves also creates hopping and migrating electrons across the defects of RGO sheets.

Nanomaterials 2021, 11, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 12. Schematic illustration of the electromagnetic interference shielding mechanism in pre-
pared nanocomposites. 

4. Conclusions 
In summary, superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared 

successfully by the sonochemical synthesis approach at various ultra-sonication times of 
25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The average crystallite size increased 
from 3.0 nm to 4.0 nm with an increase in sonication time. The lattice parameter increased 
from 7.219 Å to 7.248 Å with an increase in sonication time from 25 min to 100 min. The 
increase in ionic radii, hopping length for the octahedral and tetrahedral site, tetrahedral 
and octahedral bond length, tetrahedral edge, and shared and unshared octahedral edge 
for prepared ZnFe2O4 nanoparticles with an increase in sonication time is associated with 
cation redistribution in ZnFe2O4 nanoparticles with an increase in sonication time. The 
prepared spinel ferrite nanoparticles exhibited zero remanent and zero coercivity, which 
is associated with superparamagnetic characteristics. The prepared magnetic ZnFe2O4 na-
noparticles (ZS25, ZS50, and ZS100) and electrically conductive reduced graphene oxide 
(RGO) were embedded in a polyurethane resin (PUR) matrix to develop lightweight and 
flexible nanocomposites for electromagnetic interference shielding application. The max-
imum total shielding effectiveness (SET) value for developed nanocomposites of thickness 
1 mm in the range of 8.2–12.4 GHz frequency was 12.7 dB, 13.8 dB, and 16.7 dB, for ZS25-
RGO-PUR, ZS50-RGO-PUR, and ZS100-RGO-PUR, respectively. The higher attenuation 
constant (α) value of in prepared ZS100-RGO-PUR nanocomposite as compared with 
other samples demonstrated high absorption of electromagnetic waves. This work 
demonstrated an ingenious and effective strategy to develop polyurethane resin-based 
nanocomposites consisting of superparamagnetic ZnFe2O4 spinel ferrite nanoparticles 
with RGO for shielding electromagnetic pollution. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
(a) TEM image of ZS25, (b) size distribution of ZS25, (c) TEM image of ZS50, (d) size distribution of 
ZS50, (e) TEM image of ZS100, (f) size distribution of ZS100. 

Author Contributions: A. and T.J. performed the experiments; D.Š., P.U., M.M. (Michal 
Machovský), M.M. (Milan Masař), M.U., and L.K. performed the characterizations; R.S.Y., I.K., J.V. 
and J.H. analyzed the data and wrote the manuscript. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: We thank the financial support of the Czech Science Foundation (GA19-23647S) project at 
the Centre of Polymer Systems, Tomas Bata University in Zlin, Czech Republic. One author, Anju, 

Figure 12. Schematic illustration of the electromagnetic interference shielding mechanism in prepared
nanocomposites.

The magnetic characteristics of the superparamagnetic ZnFe2O4 nanoparticles com-
ponent in the developed nanocomposites provided a degree of magnetic loss such as
natural resonance and eddy current loss. It improves the impedance matching between
complex permittivity and permeability, which provides well absorption condition for elec-
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tromagnetic waves [95]. The improved electromagnetic wave shielding characteristics of
the ZS100-RGO-PUR nanocomposite can be primarily attributed to the inclusive acts of
magnetic loss, dielectric loss, and appropriate attenuation constant derived from various
nanofillers in the matrix.

4. Conclusions

In summary, superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared
successfully by the sonochemical synthesis approach at various ultra-sonication times of
25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The average crystallite size increased
from 3.0 nm to 4.0 nm with an increase in sonication time. The lattice parameter increased
from 7.219 Å to 7.248 Å with an increase in sonication time from 25 min to 100 min. The
increase in ionic radii, hopping length for the octahedral and tetrahedral site, tetrahedral
and octahedral bond length, tetrahedral edge, and shared and unshared octahedral edge
for prepared ZnFe2O4 nanoparticles with an increase in sonication time is associated with
cation redistribution in ZnFe2O4 nanoparticles with an increase in sonication time. The
prepared spinel ferrite nanoparticles exhibited zero remanent and zero coercivity, which
is associated with superparamagnetic characteristics. The prepared magnetic ZnFe2O4
nanoparticles (ZS25, ZS50, and ZS100) and electrically conductive reduced graphene ox-
ide (RGO) were embedded in a polyurethane resin (PUR) matrix to develop lightweight
and flexible nanocomposites for electromagnetic interference shielding application. The
maximum total shielding effectiveness (SET) value for developed nanocomposites of thick-
ness 1 mm in the range of 8.2–12.4 GHz frequency was 12.7 dB, 13.8 dB, and 16.7 dB, for
ZS25-RGO-PUR, ZS50-RGO-PUR, and ZS100-RGO-PUR, respectively. The higher atten-
uation constant (α) value of in prepared ZS100-RGO-PUR nanocomposite as compared
with other samples demonstrated high absorption of electromagnetic waves. This work
demonstrated an ingenious and effective strategy to develop polyurethane resin-based
nanocomposites consisting of superparamagnetic ZnFe2O4 spinel ferrite nanoparticles
with RGO for shielding electromagnetic pollution.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11051112/s1, Figure S1: (a) TEM image of ZS25, (b) size distribution of ZS25, (c) TEM
image of ZS50, (d) size distribution of ZS50, (e) TEM image of ZS100, (f) size distribution of ZS100.
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27. Yadav, R.S.; Kuřitka, I.; Vilcakova, J.; Havlica, J.; Masilko, J.; Kalina, L.; Tkacz, J.; Švec, J.; Enev, V.; Hajdúchová, M. Impact of grain

size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4
nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 045002.
[CrossRef]

http://doi.org/10.1016/j.carbon.2018.09.006
http://doi.org/10.1016/j.compositesa.2018.08.006
http://doi.org/10.1021/acsomega.9b03641
http://www.ncbi.nlm.nih.gov/pubmed/32201755
http://doi.org/10.1021/acssuschemeng.9b02447
http://doi.org/10.1021/acs.jpcc.6b01333
http://doi.org/10.1016/j.compositesb.2019.02.036
http://doi.org/10.1021/acsami.7b08229
http://www.ncbi.nlm.nih.gov/pubmed/28945066
http://doi.org/10.1021/acsanm.0c00843
http://doi.org/10.1021/acsanm.0c00835
http://doi.org/10.1039/C9RA03465J
http://doi.org/10.1039/C8TC05955A
http://doi.org/10.1039/C9TB01955C
http://doi.org/10.1039/c0jm03717f
http://doi.org/10.1016/j.compscitech.2014.02.018
http://doi.org/10.1039/C6RA11610H
http://doi.org/10.1016/j.jmmm.2010.05.053
http://doi.org/10.1016/j.jnoncrysol.2004.08.162
http://doi.org/10.1016/j.ultsonch.2017.10.032
http://doi.org/10.1016/j.ultsonch.2020.105111
http://www.ncbi.nlm.nih.gov/pubmed/32248043
http://doi.org/10.1016/j.ultsonch.2019.104731
http://www.ncbi.nlm.nih.gov/pubmed/31442767
http://doi.org/10.1016/j.ultsonch.2017.06.027
http://doi.org/10.1016/j.ultsonch.2018.11.003
http://doi.org/10.1016/j.ultsonch.2007.11.003
http://doi.org/10.1088/2043-6254/aa853a


Nanomaterials 2021, 11, 1112 23 of 25

28. Yadav, R.S.; Havlica, J.; Masilko, J.; Kalina, L.; Wasserbauer, J.; Hajdúchová, M.; Enev, V.; Kuřitka, I.; Kožáková, Z. Effects of
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