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Abstract 

The monitoring of physical activities and recognition of motion disorders belong to important 

diagnostical tools in neurology and rehabilitation. The goal of the present paper is in the contribution 

to this topic by (1) analysis of accelerometric signals recorded by wearable sensors located at specific 

body positions and by (2) implementation of deep learning methods to classify signal features. This 

paper uses the general methodology to analysis of accelerometric signals acquired during cycling at 

different routes followed by the global positioning system. The experimental dataset includes 850 

observations that were recorded by a mobile device in the spine area (L3 verterbra) for cycling routes 

with the different slope. The proposed methodology includes the use of deep learning convolutional 

neural networks with five layers applied to signal values transformed into the frequency domain 

without specification of any signal features. The accuracy of discrimination between different motion 

patterns for the uphill and downhill cycling and recognition of 4 classes associated with different route 

slopes was 96.6% with the loss criterion of 0.275 for sigmoidal activation functions. These results were 

compared with those evaluated for selected sets of features estimated for each observation and 

classified by the support vector machine, Bayesian methods, and the two-layer neural network. The 

best cross-validation error of 0.361 was achieved for the two-layer neural network model with the 

sigmoidal and softmax transfer functions. Our methodology suggests that deep learning neural 

networks are efficient in the assessment of motion activities for automated data processing and have 

a wide range of applications, including rehabilitation, early diagnosis of neurological problems, and 

possible use in engineering as well. 

Keywords: Multimodal signal analysis, computational intelligence, machine learning, deep neural 

networks, accelerometers, classification, motion monitoring 

 



1 Introduction 

Computer-assisted monitoring of motion activities [31, 33, 34, 36, 57] allows us to improve the quality 

of life in many different areas, including health care and personal fitness. The need for early detection 

of different pathological situations motivates the study of specific methods to examine motion 

disorders in clinical neurological practice [2, 13] using wearable sensors [38, 54, 58] and vision-based 

techniques. However, the use of video camera systems is limited to the direct visibility of the object 

[22], while wearable devices can directly translate human motion into signal patterns for the following 

mathematical processing and activity recognition. Recent advances in sensor technology and wireless 

communication systems allow us to use smartphones, smartwatches, and global positioning systems 

(GPS) for human motion monitoring (Fig. 1), assessment of sport activities [9, 44, 46], detection of 

movement symmetry [47], and gait analysis [26]. Associated methods of computational intelligence 

and deep learning allow us to evaluate these data with satisfactory accuracy in many applications [1, 

35, 53]. 

Classical clustering, segmentation, and classification methods, including decision tree (DT), k-nearest 

neighbour (k-NN), support vector machines (SVM), Bayesian methods, and the two-layer neural 

network (NN) algorithms with different transfer functions, are often used in this area [4, 24, 45]. 

Another more complex approach is based on the use of deep learning methods that are applied to 

optimise the multilayer NN for the construction and evaluation of motion models. The problem of 

limited dataset size in these cases [60] is sometimes solved by augmentation methodology, which 

enables us to enlarge the size of training datasets, to reduce the class imbalance, and to minimise 

scalability issues [37]. This approach has been tested in many areas, including gait recognition 

algorithms [8, 26] and in dentistry for teeth category classification using convolutional NNs. 

The classification of signal segments of biomedical signals is performed by classical clustering methods, 

by deep learning algorithms [16, 42, 51], and by specific discrimination methods [30]. The time, 

frequency, and scale domains are often used in these cases as the initial information sources for human 

activity monitoring. Brain functionality is analysed in some studies [12] for sleep scoring or emotion 

recognition. In addition, ECG signals are often analysed in a similar way. 

Deep learning methods [6, 19, 50, 55] are often used as general mathematical tools in many areas, 

including engineering, biology [3], biomedicine, and neurology. On the other hand, alternative specific 

methods of signal and image processing, modelling [17, 25, 29, 61], detection of multidimensional 

signal components, and signal segments recognition are often related to specific problems. 

Applications of both approaches include analysis of thermal processes and energy resources [15, 56], 

biometrics [28], stomatology [21], human activity recognition [18, 59], or interpretation of natural 

kinematics for human authentication [40]. While deep learning methods are able to process a 

complete signal segment or an image as a general body, specific methods are based on a selection of 

appropriate feature in time, or selected functional domains in many cases. 



The present paper is devoted to the application of deep neural networks (DNNs) for motion analysis 

[20] closely related to rehabilitation and evaluation of motion disorders. The goal of the study is in the 

contribution to these topics and analysis of accelerometric signals recorded by wearable sensors 

located at specific body positions. The analysed signals include those acquired by three-axis 

accelerometers during the uphill and downhill cycling on routes with different slopes (Fig. 1c). All 

datasets were acquired by a smartphone sensor that was located on the spine. This position was 

selected as the best location [10] enabling to distinguish different cycling activities with the highest 

accuracy. 

Fig. 1 Principle of data processing presenting: a accelerometric data acquisition using a wearable sensor in the spine area of 

the body with modules of these data for the selected set of experiments for uphill and downhill cycling, b data processing 

steps, c a sample route 190 m long recorded by the GPS system, d associated accelerometric data acquired by 3-axis sensor 

inside the smartphone, and e spectral values related to accelerometric data recorded during the uphill (Class CA), downhill 

(CB), steep uphill (CC), steep downhill (CD) cycling with their mean values 

 

The proposed methodology forms a contribution to the analysis of human motion data acquired during 

different movement events including sport activities and neurological disorders [13]. Accelerometric 

data analysed in the present paper form a simple and cheap information source while in other 

applications different sensors can be used. Their selection includes video and depth cameras for gait 

analysis [49], GPS systems for cycling monitoring [9], thermal cameras [44] for breathing evaluation, n 

eart rate [10], and further biosensors for motion analysis during the sleep. 

Results of the study contribute to the analysis of accelerometric data for motion monitoring and they 

include the comparison of the deep learning (DL) with further classification methods for recognition of 

different motion patterns during cycling associated with selected route slopes. From the more general 

point of view, the paper contributes to classification of vibrations associated with diagnosis of motion 

disorders in neurology [13] or during sport activities, and for analysis of engineering systems as well. 

 

2 Methods 

2.1 Data acquisition 

Measuring accelerometric data during different cycling activities allows the motion patterns that are 

important for fitness evaluation to be recognised and for movement disorders to be monitored. All 



signals were recorded by wearable sensors inside a smartphone that was located in the spine area (L3 

lumbar vertebra) of the body, as shown in Fig. 1a. This selection resulted from the previous research 

[10, 13, 38, 52] that compared classification results for sensors located at different parts of the body 

simultaneously recorded by 31 sensors of the perception neuron [5]. 

The three-axes accelerometric data and their time stamps were recorded during uphill and downhill 

cycling at routes of the different slopes to monitor physical activity [2]. Figure 1c presents one of the 

cycling routes with associated time stamps. The terrain slope was evaluated from the global positioning 

system (GPS) with data recorded by the GARMIN smartwatch system. 

Our data set included 850 segments that resulted from 170 cycling experiments with each of them 

divided into 5 parts of the same length. The average sampling frequency of accelerometric data 

acquisition was 115 Hz. Table 1 presents details of these sets including time lengths of experiments for 

the uphill, downhill, steep uphill, and steep downhill cycling. 

 

Table 1 Statistics of experiments including the average route time lengths for selected terrain slopes with their standard 

deviations (STD) 

 

 

 

 

 

 

The whole set of experiments was reduced by 3.53 % of unreliable measurements to 820 records, 

which were in the range of the selected multiple of standard deviation from the mean value for each 

class. Each experiment that belonged to specific class was associated with the slope value evaluated 

from GPS data. Table 2 presents the summary of signal segments that we used. 

All of the cycling experiments were divided into the training and testing sets with 90 % and 10 % of 

observations, respectively. The selection of signal segments was done randomly but with the balanced 

number of segments belonging to classes CA, CB, CC, and CD. The comparison of classification 

accuracies was then evaluated both for the training and testing sets. 

Figure 1e presents spectral values (evaluated from time domain values presented in Fig. 1d of training 

sets of observations belonging to classes CA, CB, CC and CD, with their mean values that represent 

typical curves of spectral components individual classes). For each experiment of the specific class, 

associated features were estimated. The whole set of experiments was then analysed using statistical 

tools, and selected classification methods were applied to the testing set. 

 

2.2 Feature extraction and classification 

The data processing presented in Fig. 1b included statistical analysis of individual accelerometric 

records for each class (Class CA: uphill cycling, Class CB: downhill cycling, Class CC: steep uphill cycling, 

Class CD: steep downhill cycling) recorded with a sampling frequency fs, depending upon the used 

smartphone technology and varying between 80 and 150 Hz in many cases. The standard deviation of 



differences between each measurement and their mean values was then used as a measure to extract 

records affected by gross measurement errors. 

 

Table 2 Statistics of accelerometric data including recorded (Rec.) and extracted (Extr.) number of segments for different 

terrain slopes with their standard deviation (STD), as recorded by the Garmin GPS 

 

 

 

 

 

 

 

The initial data processing included data interpolation, filtering [31], and resampling to eliminate 

slightly changing sampling period during data acquisition. This process also included digital filtering to 

reject slowly changing mean data values and high-frequency components. In this stage, the passband 

finite impulse response (FIR) filtering of an order M was applied to each signal segment  

for selected cut-off frequencies to evaluate a new sequence 

 

In the next step, the modulus x(n) of the accelerometric data was evaluated from the components 

sx(n), sy(n), and sz(n) recorded in three directions using the following relation 

 

 

 

for all values n = 0,1,2.,….,N - 1 in each segment N values long. Each record was then transformed by 

the discrete Fourier transform (DFT) into the frequency domain, which was used to separate the signals 

into individual classes. 

The estimation of signal features can be performed both in the time and transform domains using 

either the discrete Fourier, wavelet [11, 27], or Radon transforms. In these domains, the time-

dependent features can be evaluated and spectrograms or scalograms can be used to optimise the 

structure and coefficients of complex mathematical models for data classification. Our proposed 

approach used the simple discrete Fourier transform of each time segment  N samples  

long forming the sequence  for k = 0,1,...,N - 1 and defining frequency 

values fk = k/NfS, which appeared to be sufficient in the given application. 

The pattern matrix used for the following classification was defined for the training set using randomly 

chosen 90% measured values by two methods: 



• Deep learning each column of the pattern matrix included all of the values of each spectral 

curve in the training set with a frequency resolution of fS/K Hz for the chosen total number of 

K frequency samples (selected as K = 1024). 

• Standard classification methods each column of the pattern matrix included specific features 

that were associated with each sample in the training set, which were estimated in the 

frequency domains. 

Target values associated with each column of the pattern matrix were in both cases specified by the 

positive slope (Classes CA, CC) and the negative slope (Classes CB, CD) value. 

Accelerometric data segments in the time domain had different lengths, but the modified DFT provided 

the same selected number K = 1024 of frequency samples in the range of (0, fs) Hz for the selected 

sampling frequency fs = 60 Hz (after resampling) which allowed the use of the constant number of 

input elements R of the deep learning network presented in Fig. 2b. The selection of R = K/4 = 256 

enabled the use of the constant number of input network coefficients that covered frequency 

components [0,15] Hz. 

(1) The relative mean power in the range [fα1, fα2], 

(2) The relative mean power in the range [fα3 , fα4] . 

 

Each of spectral features of a signal segment  N samples long was evaluated using the 

discrete Fourier transform in terms of the relative power P in a normalised 

frequency band  , as follows: 

 

 

 

where 𝝓 is the set of indices for frequencies fk ∈ [fai, faj].  

Figure 3 presents the distribution of selected couples of features used for the following classification 

using the relative mean power in the frequency range [3,8] Hz versus the relative mean power in the 

frequency range [8, 15] Hz with centres and c-multiples of standard deviations of each class for c = 0.2, 

c = 0.5 and c = 1. Feature clusters for steep hill data processing are more compact and better separated 

owing to their physiological background. 

Data segments affected by gross errors were eliminated from further processing. As a criterion of this 

procedure the Euclidean distances of spatial positions of features from the centres of gravity, their 

mean and standard deviations were used. 



 

 

 

 

 

 

 

 

Fig. 2 Principle of data processing and the classification system based on the DNN with five layers 

 

 

Fig. 3 Distribution of features using the relative mean power in the frequency range [3, 8] Hz versus the relative mean 

power in the frequency range (8,15} Hz with centres and c-multiples of standard deviations of each class for c = 0.2, c = 0.5, 

and c = 1 for a uphill/downhill cycling and b steep uphill/downhill cycling using a selected accelerometer position 

 

2.3 Movement recognition 

Selected Q feature vectors associated with signal segments were used as column vectors of the pattern 

matrix PR,Q. The target matrix TS,Q of desired class probabilities was then applied [19, 23] to classify all 

of the Q feature vectors into S classes. The results of the deep learning system were compared with 

those evaluated by classical systems, which included a SVM, a Bayesian method, and a two-layer NN. 

The matrix AS,Q of output values of the selected classification system is evaluated through the system 

description function f by the following relation: 

 

 



During the learning stage, system coefficients are optimised to obtain its output values AS,Q as close as 

possible to target values TS,Q for each column vector of the pattern matrix Pr,q. The values of the output 

layer with the soft-max function, based on the Bayes’ theorem [48], provide the probabilities of each 

class. 

The DNN system [39] uses R frequency components of signal segments in each pattern vector. The 

classification system included the input layer, bidirectional long shortterm memory (LSTM) [43], fully 

connected layer, softmax layer, and the classification layer [19, 41], as presented in Fig. 2b. The deep 

learning strategy was used to minimise the selected criterion function. 

The performance of classification models is often evaluated by the log-loss function, which takes into 

account the probability that is assigned to the estimation of the target value. This can be evaluated by 

the following relation 

 

 

 

where t(i) stands for the binary output to be predicted, p(i) stands for the probability assigned by the 

model, and Q is the number of target values. Coefficients of the classification system are then 

optimised during the machine learning process to minimise the value of this criterion. Its strength lies 

in the fact that the log-loss function combines the correct and strong prediction. In addition, as a 

measure of predictive inaccuracy, it should be as low as possible. 

The standard two-layer NN system is formed by a simplified system defined by Eq. 3 with R = 2 features 

in this case. The network coefficients include values of the first and the second layer with the sigmoidal 

transfer function in the first layer. These coefficients are optimised to obtain probabilities AS,Q close to 

target values TS,Q using the softmax function as in the DNN case. Both the accuracies and the cross-

validation errors were used to evaluate the individual results. 

The selection of the classification model is closely related to the application area and the number of 

pattern values used for system optimisation in the learning stage. In many applications, simple 

classification systems provide sufficient results. However, in the case of more complicated patterns, 

DNNs with specific (convolutional) layers [19] are often used for effective decision-making with the 

sufficient generalisation ability. 

The evaluation of the classification results was performed by the multi-class Receiver Operating 

Characteristic (ROC) [7, 14, 45] to illustrate the performance of the classifier system, and by a confusion 

matrix presented in Fig. 4 for classification into S classes. The ROC analysis was performed on the basis 

of a pairwise comparison of one class against all other classes [32]. 



 

 

Fig. 4 Confusion matrix for the evaluation of a model classifying pattern vectors belonging to true (target) classes and 

estimating their (predicted) classes for the multi-class classification into S categories 

 

The associated common performance metrics used in the multiclass confusion matrix include the 

following ones 

• Precision of class k (pos. predict. value) Probability of correct classification of class k related to 

the number of instants classified to class k 

 

 

• Sensitivity of class k (True positive rate, recall) Probability of correct classification of class k 

related to the number of instants belonging to class k 

 

 

• Specificity of class k (True negative rate) Probability of incorrect classification of class k 

related to the number of instants not classified to class k 

 

 

 

where TNK(k) = ∑ TP(j), FPK(k) = ∑ FP(j), j ≠ k  

False positive rate Probability of positive classification for the negative set (1-specificity) 

 

 



• Accuracy Probability of global correct classification 

 

 

3 Results 

The accelerometric data were classified into four classes (class CA: uphill cycling, class CB: downhill 

cycling, class CC: steep uphill cycling, class CD: steep downhill cycling) using several methods. Figure 5 

shows the results of the initial 400 epochs of the deep learning optimisation process, presenting the 

training accuracy and the loss for different randomly selected initialisations of the whole model during 

10 experiments. The goal of this process was to optimise the network to maximise the accuracy and to 

minimise the loss during individual epochs. This optimisation was performed using the mathematical 

and software environment of the Matlab2020a system. 

Table 3 presents the accuracy AC [%] and the loss value LV for 10 deep learning experiments for 

different network initialisations presenting the final value (F) after 400 learning epochs and its mean 

(F30) evaluated from 30 last epochs. 

 

Fig. 5 Results of the initial 400 epochs of the deep learning optimisation presenting the training accuracy and the loss for 10 

experiments with randomly selected initialisations 

  



Table 3 Accuracy AC [%] and the loss value LV for 10 deep learning experiments for different network initialisations 

presenting the final value (F) after 400 learning epochs and its mean (F30) evaluated from 30 last epochs 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training was performed for the training set of values presented in Fig. 2a and verification for the 

different set of 10% of experiments randomly chosen from all observations. The mean value of the 

accuracy and the loss evaluated from last 30 epochs was 74.6% and 0.63, respectively, with its standard 

deviation reduced by two orders with respect to the evaluation of final values only. 

The optimisation process of the DNN structure presented in Fig. 2 for the chosen initial learning rate 

(= 0.001), learning rate drop period (= 4), and gradient threshold (= 2) in the incremental mode allowed 

us to modify the network coefficients during the learning stage. 

 

Fig. 6 Evolution of the accuracy and the loss during 12 incremental learning stages of the deep learning system with the 

final accuracy and loss value 96.9 % and 0.10, respectively 

 



Figure 6 presents the evolution of the accuracy and the loss during 12 incremental learning stages. This 

process enabled us to improve the behaviour of the DNN with the randomly selected training system 

initialisations. We achieved the final accuracy and loss value 96.9 % and 0.10, respectively, after 5000 

training epochs. The mean values of accuracies and loss values for last 30 epochs were 97.3 % and 

0.09, respectively. Additional training epochs further increased the accuracy but with the danger of 

overlearning. 

The classification results achieved for the DNN were compared with those evaluated by the SVM 

method, Bayesian method (Naive Bayes’ Classifier), and the two-layer NN with the sigmoidal and 

softmax transfer functions. Figure 7 presents the classification into four classes (CA: uphill cycling, CB: 

downhill cycling, CC: steep uphill cycling, CD: steep downhill cycling) for two features evaluated as the 

relative power in two frequency bands using selected classification methods with accuracy (AC) and 

the k-fold cross-validation (CV) errors (for k = 10) with visualisation of class boundaries. 

 

Table 4 Accuracy and cross-validation (CV) errors for classification of accelerometric data into two classes by the SVM, 

Bayesian method, the two-layer NN and the five-layer DNN 

 

 

 

 

 

 

Table 4 presents a comparison of the accuracy and cross-validation errors for classification of NN and 

the five-layer DNN after 5000 learning epochs. Results of classification for the SVM, Bayesian method, 

and the two-layer NN are very close, with an accuracy between 60.1 % and 62.9 % and the mean value 

of the cross-validation of 0.388. Much higher accuracy of 96.6 % was achieved for the DNN and its 

cross-validation decreased by 29.1 % to 0.275. 

Figure 8 presents the test of the optimised DL system for input values selected from the testing set 

recorded for uphill (class CA), downhill (class CB), steep uphill (class CC), and steep downhill (class CD) 

cycling with the predicted probabilities of of these classes. The mean prediction error is 35, 40, 10, and 

10 % for individual classes. For each segment, four probabilities of the belongings to separate classes 

are presented with their highest value pointing to the predicted class. The total number of 19 segments 

out of 80 randomly selected experiments was not classified correctly. In case of the steep slope, only 

4 segments out of 40 are misclassified. 



More detail results for the training and testing sets are presented in confusion matrices presented in 

Table 5 for the two-layer neural network classification into four classes. 

  

Fig. 7 Classification of accelerometric data for two features evaluated as the relative power in two frequency bands using: a 

the SVM method, b Bayesian method, and c the two-layer NN with accuracy (AC [%]) and cross-validation (CV) errors 

 

Fig. 8 Results of network test presenting predicted probabilities of classes CA, CB, CC, and CD (corresponding with those in 

Fig. 7) for the input test set of signal segments that belong to a class CA (uphill cycling), b class CB (downhill cycling), c class 

CC (steep uphill cycling), and d class CD (steep downhill cycling) with associated classification errors 

 

Similar results evaluated for the deep learning system are presented in Table 6. The accuracy of the DL 

system has increased from 63.0 to 96.8 % for the training set. The error value of the testing set 

decreased from 0.405 to 0.237. The precision PPV(k) of classes CC and CD (standing for the steep hill 

cycling) is much higher than that for classes CA and CB allowing better separation of motion activities 

as assumed. 



Table 5 Confusion matrix of the classification by the two-layer neural network model for the training and testing sets with 

true positive values on the matrix diagonal (in the bold) 

 

Table 6 Confusion matrix of the classification by the DL neural network model for the training and testing sets with true 

positive values on the matrix diagonal (in the bold) 

 

4 Discussion 

Our results show that the incremental DNN learning strategy allows continuous monitoring of model 

accuracy dependent on the level of signal quality, data preprocessing, and selection of model 

coefficients. Its advantage is, moreover, in no requirement for selection of signal features. The 



classification accuracy was 96.6% and 72.5% for training and testing sets. Our results show that 

incremental learning allows continuous monitoring of model accuracy dependent on the level of signal 

quality, data preprocessing, and selection of model coefficients. 

The proposed DNN system used the sigmoidal transfer function in its second layer. Possible 

improvements can be achieved by different network structures including the use of scaled polynomial 

constant unit (SPOCU) activation function [30], for instance. Its use increased the training accuracy to 

99.3 % (the loss: 0.03). 

Classification of motion patterns and monitoring of physical activities by accelerometers is affected by 

three main factors: (1) optimal body positioning of accelero-metric sensors [13, 34, 38], (2) the load of 

the physical exercise presented in Figs. 3 and 8, and (3) computational tools and the selection of the 

appropriate mathematical methodology. Present results show that higher load during accelerometric 

data acquisition can contribute to better separation abilities of motion patterns. 

The deep learning system can utilise the complete signal segment in the time or transform domain as 

a pattern vector, and thus, the process of selection of signal features can be eliminated. Data 

preprocessing for signal segments classification is simplified as no features are selected, but the 

classification model is much more complex comparing to standard classification methods. In contrary 

to the deep learning, the standard approach to classification based on a specification of features 

enables the visualisation of signal segments properties, both in the time and frequency domains. The 

combination of both approaches to data processing can lead to a deeper understanding of the physical 

behaviour of the studied system. 

The general background of the current research suggests the use of motion patterns classification in 

many different areas using similar mathematical tools. Feature-based methods can benefit from the 

visual assessment of their distribution. On the other hand, deep learning methods can be used for the 

direct analysis of observed sequences either in the time or frequency domains without any initial 

selection of features but with specific demands for much more complex computational environment. 

In both cases, new machine learning strategies and their implementation for fitness assessment, for 

real biomedical data processing, and for monitoring of physiological functions will also be studied. 

The video supplement of the present paper includes the animation of several cycling routes related to 

the (i) ac-celerometric data acquisition in the time domain for uphill (CA) and downhill (CB) cycling, (ii) 

their transform into the spectral domain enabling either the direct implementation of the deep 

learning methodology or evaluation of selected signal characteristics, and (iii) feature-based 

classification to distinguish two classes of motion activities. 

 

5 Conclusion 

This paper has presented the use of selected methods for the classification of accelerometric cycling 

data. Classification into categories of different loads was performed by the DNN with results compared 

by those of the SVM, Bayesian method and the two-layer NN. The advantage of the deep learning is in 

the fact that no specific features were estimated; the complete data segments were transformed into 

the frequency domain and then used as inputs into the proposed model. Limitations of this approach 

are in the lower possibilities of geometric interpretation of the whole process and needs for the 

extensive computational environment. 

It is expected that further research will be devoted to the study of specific advantages of deep learning 

systems for signal and image processing in biomedicine and neurology. The methodological research 



will include the study of incremental learning strategy allowing to change the system structure and its 

coefficients during the learning process. 
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