
Abstract—The algebraic approach is applied to the HiMAT 

(Highly Maneuverable Aircraft Technology) control. The objective 

is to find a robust controller which guarantees robust stability and 

decoupled control of longitudinal model of a scaled remotely 
controlled vehicle version of the advanced fighter HiMAT. Control 

design is performed by decoupling the nominal multi-input multi-

output system into two identical single-input single-output plants 

which are approximated by a 4th order transfer function. The alge-

braic approach is then used for pole placement design and the no-

minal closed-loop poles are tuned so that the peak of the µ-function 

is minimal. As an optimization tool, evolutionary algorithm Diffe-

rential Migration is used in order to overcome the multimodality of 

the cost function yielding simple controller with decoupling for 

nominal plant which is compared with the D-K iteration through 

simulations of standard longitudinal manoeuvres documenting de-

coupled control obtained from algebraic approach for nominal plant 

as well as worst case perturbation.

I. INTRODUCTION

Algebraic methods are well known and easy to use for 
SISO (single-input single-output) systems described by con-
tinuous or discrete transfer functions. However, if applied to 
MIMO (multi-input multi-output) systems computational 
difficulties are increasing. In this paper, the problem of 
MIMO system design is treated via decoupling a MIMO 
system into two identical SISO plants which are then appro-
ximated by transfer functions with simple structure. This 
guarantees decoupled control for the nominal feedback loop 
and simplifies derivation of pole placement formulae. 

In order to evaluate robust stability and performance the 

structured singular value denoted � is used ([4] and [6]). The 

algebraic �-synthesis [3] overcomes some difficulties con-
nected with the D-K iteration as the final controller is not 
necessarily optimal with respect to structured singular value 
as the measure of robust performance [12]. Moreover, the 
controller obtained via the algebraic approach ([8] and [13]) 
can have simpler structure. This is due to the fact that there 
is no need of absorbance of the scaling matrices into the ge-
neralized plant, and hence, no need of further simplification 
causing deterioration of the frequency properties of the re-
sulting controller. 

The paper demonstrates an application of the algebraic 

�-synthesis to the control of longitudinal model of a scaled 
remotely-piloted version of the advanced fighter HiMAT 
being a well known example of robust control design. The 
D-K iteration is used as a reference method and the results 
are compared through simulations for nominal and perturbed 
plants. 
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The notation in the paper is as follows: R and C
n�m

 are 

real numbers and complex matrices, respectively, || � ||� denotes 

norm in Hardy space of stable transfer matrices H�(jR, C
n�m

), 

In�m is the unit matrix of dimension n�m and RPS being the 
ring of Hurwitz-stable and proper rational transfer functions. 

II. HIMAT VEHICLE MODEL AND CONTROL OBJECTIVES

For the mathematical description and control objectives 
of the HiMAT see [1], [7], [9] and [11]. In the controller de-
sign, only longitudinal dynamics of the airplane will be con-
sidered which are supposed to be uncoupled from the lateral-
directional ones. For the details on linearized models taking 
into account a set of flight conditions see [7]. The definition 
of state vector includes vehicle's basic rigid body quantities: 

 x
T
 = (�v, �, q, �) (1) 

where �v is forward velocity, � is angle-of-attack, q is pitch 

rate and � is pitch angle. The flight path angle (�) is �  = �  – �. 
The motions in the vertical plane are defined using state 
variables: 

�v - the velocity vector (forward speed) 

�  - the angle between the velocity vector and the aircraft's 
longitudinal axis (angle-of-attack) 
q – the rate-of-change of the aircraft attitude angle (pitch 
rate) 

�  - the aircraft attitude angle (pitch angle) 

The actuator signals are the elevon command (�e) and canard 

command (�c). The measured quantities are �  and �. 

There are three longitudinal manoeuvres making sense for the 
modelled problem: 

- Change the altitude of the airplane with constant 
attitude and varying angle-of-attack representing the 
case where the attitude is constant and the velocity 
vector rotates (vertical translation). 

- Change the attitude with constant flight path angle �
meaning that the velocity vector does not rotate 
(pitch pointing). 

- Change the flight path angle with zero angle-of-
attack implying standard airplane behaviour with no 
angle-of-attack alteration (direct lift). 

III. CLOSED-LOOP FEEDBACK STRUCTURE

The controller design is performed using closed-loop 
feedback interconnection taking into account the uncertainty 
of the model and performance objectives in Fig. 1. 
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Figure 1. HiMAT closed-loop interconnection structure. 

The dashed rectangle is the uncertain model of the 
airplane denoted P. Inside the rectangle are the nominal 
model of the airplane dynamics Pnom and two elements the 

weight Wdel and unknown �1, ||�1||� < 1 parameterizing the 
multiplicative uncertainty in the model. 

Stabilizing controller K is designed so that the perturbed 
weighted sensitivity transfer function 

 S(�1) � Wp[I + Pnom(I +�1Wdel)K]
–1

 (2) 

has ||S(�1)||� < 1 for ||�1||� < 1. 

IV. UNCERTAINTY MODEL

Nominal state-space model is defined by the following 
matrices 
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Given this nominal model HiMAT (i.e. Pnom(s)) a stable 

2 � 2 transfer matrix Wdel(s) is specified representing the 
uncertainty weight. These two transfer matrices parameterize 
entire set of plants P which must be suitably controlled by 
the robust controller K: 

 P � {Pnom(I + �1Wdel): �1 stable, ||�1||� � 1} (4) 
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Figure 2. HiMAT multiplicative uncertainty weighting function. 

Uncertainty in airplane modelling is captured in normalized 
unknown transfer function matrix Δ1. The unknown transfer 
function Δ1(s) is used to parameterize the potential differen-

ces between the nominal model Pnom(s) and the actual beha-
viour of the real airplane denoted P. 

The uncertainty weight Wdel has the form Wdel � Wdel(s) � I2�2

for a given scalar transfer function 
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The set of plants represented by this uncertainty weight is 
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The bode plot of the uncertainty weight Wdel(s) is in Fig. 2. 

V. SPECIFICATIONS OF CLOSED-LOOP PERFORMANCE

The performance of the closed-loop system is evaluated 
using the output sensitivity transfer function (I + PK)

–1
. In 

this problem, a simple weight of the form Wp(s) = Wp(s) I2�2

is used with 
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Figure 3. Inverse of the HiMAT performance weight. 

Performance objective is achieved if ||Wp(I + PK)
–1

||� < 1. 

That is, ||Wp(I + PK)
–1

||� < 1 if and only if, at all frequen-

cies, )(/1)]()[( 1 ��& jWj p'� �
PKI . The bode plot of 1/Wp

is shown in Fig. 3. 

VI. CONTROLLER DESIGN

Controller design via the structured singular value con-
sists of making the open-loop interconnection and the con-
troller design itself. In this paper, the D-K iteration and 
algebraic μ-synthesis is used. The results are verified by 
simulations. 

A.  D-K iteration 

Performance specifications, model uncertainty and noise 
suppression requirements are incorporated into the LFT 
interconnection in Fig. 4. Here, the generalized plant G(s) is 
a transfer matrix with eight inputs and six outputs and Wn is 
a sensor noise weighting matrix in the form 

 Wn(s) = Wn(s) I2�2 (8) 

with 
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The weight Wn takes into account high frequency noise 
arising in sensors. With respect to this interconnection, 
define a block diagonal matrix 
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The first block represents the uncertainty in the model of air-
plane. The second corresponds to sensor noise and performance 
weighting functions. 

The structured singular value μ is given by the following 
definition: 

Definition 1: For M * C4�6 is �����(M) defined as 

}0)det(,:)(min{

1
)(

���*��
�

MIΔ
MΔ &

�  (11) 

If no such � * ���� exists, for which I – M� is singular, then 

�����(M) = 0. 
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Figure 4. HiMAT open-loop interconnection structure. 

Define GP � Fu(G, �1) and let Fl(G, K) be stable then it can 

be proved [5] that, for all �1 stable with ||�1||� < 1, perfor-

mance condition ||Fl(GP, K)||� � 1 hold and the closed loop in 
Fig. 5 is well posed and internally stable if and only if 

1)],([sup '�
*

KGF
R
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 (12) 

where Fu and Fl denotes upper and lower linear fractional 
transformation, respectively. 

Figure 5. Scheme explaining robust performance condition. 

Via the D-K iteration, a 30
th

 order controller satisfying 
the robust performance condition (12) has been obtained 
(see Fig. 6). Step response for the vertical translation ma-
noeuvre is not a monotonous function. However, if the plant 
is perturbed by the worst-case perturbation then there is not 

a significant deterioration in comparison with the nominal 
case (see Fig. 7 and 8). 
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Figure 6. μ-plot for the D-K iteration controller. 
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Figure 7. Step response for the nominal plant (D-K iteration). 

c

e

�

�
�
�

s

t

Figure 8. Step response for the worst case perturbation (D-K iteration). 

B. Algebraic approach 

For the purposes of algebraic μ-synthesis, the nominal 
MIMO system is decoupled into two identical SISO plants. 
The nominal HiMAT model can be defined in terms of 
transfer functions as: 
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For decoupling of the nominal plant Pnom, it is satisfactory to 
have the controller in the form 
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The decoupling matrix incorporated into the controller does 
not cancel unstable poles or zeroes implying that internal 



stability of the nominal feedback loop is achieved. The mul-
tidimensional control is reduced into finding single-input 
single-output controller K(s) obtained by tuning the poles of 
the nominal feedback loop with the nominal plant 
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Define 
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The transfer function Pdec is approximated by the 4
th

 order 
system 
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and the controller 
M

N
K �  is obtained by solving the Dio-

phantine equation 

 AdecM + BdecN = 1 (18) 

with Adec, Bdec, M, N * Rps. It can be shown that the asympto-
tic tracking of the reference signal is achieved if and only if 
AdecM is divisible by Fr and the disturbance is suppressed if 
AdecM is divisible by Fd. Here, Fr and Fd denote Laplace 
transforms of the reference and disturbance, respectively. By 
the analysis of the polynomial degrees of adec and bdec the 
transfer functions Adec, Bdec, M and N are chosen so that the 
number of closed-loop poles is minimal and asymptotic 
tracking is achieved: 
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The degrees of polynomials m and n are: 

 ∂m = 3, ∂n = 4 (21) 

Thus, the characteristic polynomial of the nominal closed 
loop has 8 poles –αi representing the tuning parameters. The 
resulting controller K has the structure: 

ms

n
sK �)(  (22) 

The open-loop interconnection is the same as for the D-K ite-
ration but performance weight is relaxed: 
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The cost function is defined by 
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Through Differential Migration (e.g. [2]) nominal closed loop 
poles were obtained: 

α = [0.0095, 0.597, 0.001, 0.3975, 0.8038, 44.2131, 1.1358·109, 8.5867·10-4] (25) 

and the scalar part of the controller: 
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Figure 9. μ-plot for the algebraic approach. 

The relaxed performance weight is justified by the addi-
tional postulate of the decoupled control for the nominal 
closed loop which is not present in the D-K iteration case 
making the task of achieving robust performance and stabi-
lity more difficult. The relaxing of the performance weight 
does not degrade the uncertainty model and the resulting 
quality of the controller can be assessed by the simulation 
for the nominal and perturbed plant. 
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Figure 10. Step response for the nominal plant (alg. approach). 

c

e

�

�

�
�

s

t

α

θ

elevon

canard

Figure 11. Step response for the worst case perturbation (alg. approach). 

In order to overcome multimodality of (24), an evolutio-
nary algorithm Differential Migration was used for searching 
the optimal values of αi. Rough results obtained from DM 
were tuned up by the Nelder-Mead simplex method. The 
poles were constrained to the interval 0 to –20. The resulting 
controller has 24 states including decoupling part and satis-
fies condition (12) which guarantees robust performance and 



stability (see Fig. 9). Simulation of the vertical translation 
manoeuvre for the stepwise reference signal shows that the 
response is monotonous and significantly faster than for the 
D-K iteration (Fig. 10). Set point tracking for both the nomi-
nal and perturbed plant is achieved during 0.04 s compared 
to 4 s for the controller obtained by the D-K iteration. If the 
plant is perturbed by the worst-case perturbation then there 
is no significant deterioration in comparison with the nomi-
nal case (see Fig. 11). Moreover, the decoupling property is 
held for both cases. 

VII. CONCLUSION

The paper has presented an application of the algebraic 
approach to the HiMAT airplane. The nominal MIMO plant 
was decoupled into two identical SISO systems and the con-
troller was designed via optimization of the poles of the 
nominal closed loop. The performance and robustness were 
evaluated by the peak of the μ-function in frequency domain. 
Besides its simpler structure, the resulting controller satisfies 
the robust performance condition and guarantees the robust 
stability providing monotonous step response and signifi-
cantly faster set point tracking during the vertical translation 
manoeuvre than the D-K iteration for both the nominal and 
perturbed plant. Although it was not intended during design, 
the decoupled control has been achieved also for the per-
turbed plant. The better performance of the controller ob-
tained by the algebraic approach is due to the fact that the 
algebraic method implements the decoupled control for the 
nominal closed loop. This scheme can be implemented in the 
scope of the standard design using model matching bringing 
another step into the process of obtaining the controller (see 
[10]). The D-K iteration without decoupling makes a trade-
off between robust stability and performance, however, the 
higher robustness is achieved at the expense of worse perfor-
mance as it fully utilizes the MIMO structure of the controller. 
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