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Abstract: Motion analysis is an important topic in the monitoring of physical activities and recognition
of neurological disorders. The present paper is devoted to motion assessment using accelerometers
inside mobile phones located at selected body positions and the records of changes in the heart rate
during cycling, under different body loads. Acquired data include 1293 signal segments recorded
by the mobile phone and the Garmin device for uphill and downhill cycling. The proposed method
is based upon digital processing of the heart rate and the mean power in different frequency bands
of accelerometric data. The classification of the resulting features was performed by the support
vector machine, Bayesian methods, k-nearest neighbor method, and neural networks. The proposed
criterion is then used to find the best positions for the sensors with the highest discrimination abilities.
The results suggest the sensors be positioned on the spine for the classification of uphill and downhill
cycling, yielding an accuracy of 96.5% and a cross-validation error of 0.04 evaluated by a two-layer
neural network system for features based on the mean power in the frequency bands 〈3, 8〉 and
〈8, 15〉 Hz. This paper shows the possibility of increasing this accuracy to 98.3% by the use of more
features and the influence of appropriate sensor positioning for motion monitoring and classification.

Keywords: multimodal signal analysis; computational intelligence; machine learning; motion
monitoring; accelerometers; classification

1. Introduction

Recognition of human activities based on acceleration data [1–6] and their analysis by signal
processing methods, computational intelligence, and machine learning, forms the basis of many
systems for rehabilitation monitoring and evaluation of physical activities. Extensive attention has
been paid to the analysis of these signals and their multimodal processing with further biomedical
data [7,8] for feature extraction, classification, and human–computer interactions. Methods of motion
detection and its analysis by accelerometers and global positioning systems (GPS) are also used for
studies of physical activities including cycling [9–14], as assessed in this paper.

Sensor systems used for motion monitoring include wireless motion sensors (accelerometers and
gyrometers) [15,16], camera systems (thermal, depth and color cameras) [9,17], ultrasound systems [18],
and satellite positioning systems [12–14]. Specific methods are used for respiratory data processing [19]
as well. There are many studies devoted to the analysis of these signals, markerless systems [20], and
associated three-dimensional modelling.

There are very wide applications of motion monitoring systems, including gait analysis [21–26],
motion evaluation [27–32], stroke patients monitoring [18,33], recognition of physical activities [34–38],
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breathing [39], and detection of motion disorders during sleep [40]. The combination of accelerometer
sensors at different body locations in possible combination with GPS and geographical information
systems is useful in improving movement monitoring of humans [41], assessing road surface
roughness [10], and activity recognition [30] as well.

The present paper is devoted to the use of these systems to recognize selected motion activities
using data acquired by accelerometers in mobile phones [42–44] with positioning and heart rate (HR)
data simultaneously recorded by the Garmin system [45,46]. The locations of the accelerometric and
Garmin sensors used to monitor the motion and heart rate data are presented in Figure 1. The
methods used for the data processing include data de-noising, statistical methods, neural networks
[47], and deep learning [48–51] methods with convolutional neural networks.
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Figure 1. The principle of motion data acquisition and their processing, presenting (a) location of
accelerometric and Garmin system sensors during cycling, (b–d) sample signals recorded by the heart
rate sensor, Garmin position system, and the RightLeg accelerometric data while moving up and down,
(e) distribution of the mean power in the frequency ranges 〈0, 3〉 Hz and 〈8, 15〉 Hz, and (f) distribution
of the mean power in the frequency range 〈3, 8〉 Hz and the mean heart rate for different cycling classes
(route conditions) with cluster centers and ellipses showing multiples of the standard deviations.

The main goal of the present paper is the analysis of accelerometric and heart rate signals to
contribute to monitoring physical activities and to the assesment of rehabilitation exercises [11,52].
Selected sensors were used for the analysis of data recorded during cycling in different conditions,
extending the results recorded on the exercise bike [53,54]. The proposed mathematical tools include
the use of neural networks [55], machine learning for pattern recognition, and the application of signal
processing methods for data analysis to enable the monitoring of selected physiological functions.

2. Methods

2.1. Data Acquisition

Figure 1a presents the location of sensors for the acquisition of accelerometric, positioning, and
heart rate data during cycling experiments with different loads. Both the mobile phone at different
locations (for accelerometric data recording) and the Garmin system (for the simultaneous recording
of GPS data and the heart rate) were used for data acquisition. Sample signals for uphill and downhill
cycling are shown in Figure 1b–d.

The GPS and motion data (time stamps, longitude, latitude, altitude, cycling distance, and the
cycling speed) were simultaneously measured by a Garmin fitness watch (Fenix 5S, Garmin Ltd.,
Schaffhausen, Switzerland). The heart rate data were acquired by a Garmin chest strap connected to a
Garmin watch by the wireless data transmission technology. All data sets were acquired during the
cycling experiments realised by a healthy and trained adult volunteer. Records were subsequently
stored to the Garmin Connect website, exported in the specific Training Center (TCX) format (used



Sensors 2020, 20, 1523 3 of 13

for data exchange between fitness devices), converted to the comma-separated values (CSV), and
imported into the MATLAB software for further processing.

A summary of the cycling segments for specific locations of the mobile phone used for
accelerometric data acquisition is presented in Table 1.

The original mean sampling frequency was 142 Hz (changing in the range 〈15, 300〉 Hz with the
standard deviation STD = 114) for accelerometric data and 0.48 Hz (changing in the range 〈0.2, 1〉 Hz,
STD = 0.27) for heart rate data.

Table 1. Summary of cycling segments of individual positions P(pos) used for classification.

Position Index Position Name Number of Segments

pos P(pos) Used: Q(pos) Rejected

1 LeftLeg 180 6
2 RightLeg 210 9
3 Spine1 177 9
4 Spine2 174 6
5 LeftArm 177 3
6 RightArm 198 0
7 Neck 177 6

TOTAL NUMBER: 1293 39

Table 2 presents the categories used for the classification. They were selected according to the
profile of the terrain, its slope being evaluated by the Garmin GPS system. The individual categories
include: (i) c(1)-HillUp; (ii) c(2)-HillDown; (iii) c(3)-SteepHillUp; and (iv) c(4)-SteepHillDown cycling.

Table 2. The mean slope S [%] of the terrain segments, and its standard deviation (STD), as recorded
by the Garmin GPS system.

Class S[%] STD

c(1)-HillUp 10.3 3.3
c(2)-HillDown −9.4 3.9
c(3)-SteepHillUp 19.8 3.4
c(4)-SteepHillDown −18.7 3.4

A sample time segment of the modulus of the accelerometric data simultaneously recorded by
the mobile phone at the selected location (the RightLeg) is presented in Figure 1d. All procedures
involving human participants were in accordance with the ethical standards of the institutional research
committee and with the 1964 Helsinki Declaration and its later amendments.

2.2. Signal Processing

The proposed data processing method included data analysis at first. The total number of 1293
cycling segments was reduced to 1254 segments in the initial step, to exclude those with the standard
deviation of the speed higher than a selected fraction of its mean value. This process excluded 3% of
the cycling segments with gross errors and problems on the cycling route, as specified in Table 1.

In the next step, the linear acceleration data without additional gravity components were
processed. Their modulus Aq(n) of the accelerometric data was evaluated from the components
Axq(n), Ayq(n), and Azq(n) recorded in three directions:

Aq(n) =
√

Axq(n)2 + Ayq(n)2 + Azq(n)2 (1)

for all values n = 0, 1, 2, · · · , N − 1 in each segment q = 1, 2, · · · , Q(pos) N values long, for all classes
and at positions pos specified in Table 1. The Garmin data were used to evaluate the mean heart
rate, cycling speed, and the mean slope in each segment. Owing to the slightly changing time period



Sensors 2020, 20, 1523 4 of 13

during each observation, the initial preprocessing step included the linear interpolation into a vector
of uniformly spaced instants with the same endpoints and number of samples.

The processing of multimodal records {s(n)}N−1
n=0 of the accelerometric and heart rate signals was

performed by similar numerical methods. In the initial stage, their de-noising was performed by finite
impulse response (FIR) filtering of a selected order M, resulting in a new sequence {x(n)}N−1

n=0 using
the relation

x(n) =
M−1

∑
k=0

b(k) s(n− k) (2)

with coefficients {b(k)}M−1
k=0 forming a filter of the selected type and cutoff frequencies. In the present

study, the selected cutoff frequency fc = 60 Hz was used for the antialiasing low pass FIR filter of the
order M = 4. It allowed signal resampling for this new sampling frequency.

The accelerometric data were processed to evaluate the signal spectrum, covering the full
frequency range of 〈0, fs/2 = 30〉 Hz related to the sampling theorem. The mean normalized
power components in 4 sub-bands were then evaluated to define the features of each segment
q = 1, 2, · · · , Q(pos) for each class and sensor position. The resulting feature vector F(:, q) includes in
each of its columns q relative mean power values in the frequency bands 〈 fc1, fc2〉 Hz, which form a
complete filter bank covering the frequency ranges of 〈0, 3〉, 〈3, 8〉, 〈8, 15〉, and 〈15, 30〉 Hz. The next
row of the feature vector includes the mean heart rate in each segment q = 1, 2, · · · , Q(pos).

Each of the selected spectral features of a signal segment {y(n)}N−1
n=0 N samples long was

evaluated using the discrete Fourier transform, in terms of the relative power PV in a specified
frequency band 〈 fc1, fc2〉 Hz, as follows:

PV=
∑k∈Φ |Y(k)|

2

∑N/2
k=0 |Y(k)|

2 , Y(k)=
N−1

∑
n=0

y(n) e−j kn 2π
N (3)

where Φ is the set of indices for which the frequencies fk =
k
N fs ∈ 〈 fc1, fc2〉 Hz.

Figure 1e,f presents selected features during different physical activities. Figure 1e shows the
distribution of the mean power in the frequency ranges 〈0, 3〉 Hz and 〈8, 15〉 Hz, and Figure 1f presents
the distribution of the mean power in the frequency range 〈3, 8〉 Hz and the mean heart rate for
different categories of cycling (route conditions) with cluster centers and ellipses showing multiples of
the standard deviations.

The validity of a pair of features F1, F2 selected from the feature vector F(:, q) for all segments
q = 1, 2, · · · , Q(pos) related to specific classes c(k) and c(l) and positions pos was evaluated by the
proposed criterion Zpos(k, l) for cluster couples k, l defined by the relation:

Zpos(k, l) =
Dpos(k, l)− STpos(k, l)

Qpos(k, l)
(4)

where

Dpos(k, l) = dist(Cpos(k); Cpos(l)) (5)

STpos(k, l) = std(Cpos(k)) + std(Cpos(l)) (6)

using the Euclidean distance Dpos(k, l) between the cluster centers Ck, Cl of the features associated with
classes k and l, respectively, and the sum STpos(k, l) of their standard deviations. For well-separated
and compact clusters, this criterion should take a value larger than zero.

Signal analysis resulted in the evaluation of the feature matrix PR,Q. The feature vector
[p(1, q), p(2, q), · · · , p(R, q)]′ in each of its columns includes both the mean power in specific frequency
ranges and the mean heart rate. The target vector TV1,Q = [t(1), t(2), · · · , t(Q)]′ includes the
associated terrain specification according to Table 2 with selected results in Figure 2. Different
classification methods were then applied to evaluate these features.
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Figure 2. The distribution of the mean power in the frequency ranges 〈3, 8〉 Hz and 〈8, 15〉 Hz for the
accelerometer at (a) the LeftLeg, (b) the LeftArm, (c) the upper Spine1, and (d) the lower Spine2 position.

2.3. Pattern Recognition

Pattern values in the feature matrix PR,Q and the associated target vector TV1,Q were then used
for classifying all Q feature vectors into separate categories. System modelling was performed by a
support vector machine (SVM), a Bayesian method, the k-nearest neighbour method, and a neural
network [22,55–57]. Both the accuracies and the cross-validation errors were then compared with the
best results obtained by the two-layer neural network.

The machine learning [57,58] was based on the optimization of the classification system with
R = 5 input values (that corresponded with the features evaluated as the mean power in four frequency
bands and the mean heart rate) and S2 output units in the learning stage. The target vector TV1,Q was
transformed to the target matrix TS2,Q with units in the corresponding class rows in the range 〈1, S2〉
to enable evaluating the probability of each class.

In the case of the neural network classification model, the pattern matrix PR,Q formed the input
of the two-layer neural network structure with sigmoidal and softmax transfer functions presented in
Figure 3a and used to evaluate the values by the following relations:

A1S1,Q = f 1(W1S1,R PR,Q, b1S1,1) (7)

A2S2,Q = f 2(W2S2,S1 A1S1,Q, b2S2,1). (8)

For each column vector in the pattern matrix, the corresponding target vector has one unit element in
the row pointing to the correct target value.

The network coefficients include the elements of the matrices W1S1,R and W2S2,S1 and associated
vectors b1S1,1 and b2S2,1. The proposed model uses the sigmoidal transfer function f 1 in the first layer
and the probabilistic softmax transfer function f 2 in the second layer. The values of the output layer,
based on the Bayes theorem [22], using the function



Sensors 2020, 20, 1523 6 of 13

f 2(.) =
exp(.)

sum(exp(.))
(9)

provide the probabilities of each class.
Figure 3b illustrates the pattern matrix formed by Q column vectors of R = 5 values representing

the mean power in 4 frequency bands and the mean heart rate. Figure 3c presents the associated target
matrix for a selected position of the accelerometric sensor.

(a) NEURAL NETWORK FOR PATTERN RECOGNITION 

                             R     -     S1    -    S2
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Transfer     Transfer
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Figure 3. Pattern matrix classification using (a) the two-layer neural network with sigmoidal and
softmax transfer functions, (b) feature matrix values for classification of segment features and a given
sensor position (Spine2) into a selected number of classes, and (c) associated target matrix.

Each column vector of grey shade pattern values was associated with one of the S2 different target
values during the learning process.

The receiver operating characteristic (ROC) curves were used as an efficient tool for the evaluation
of classification results. The selected classifier finds in the negative/positive set the number of
true-negative (TN), false-positive (FP), true-positive (TP), and false-negative (FP) experiments.

The associated performance metrics [59] can then be used to evaluate:

• Sensitivity (the true positive rate, the recall) and specificity (the true negative rate):

SE =
TP

TP + FN
, SP =

TN
TN + FP

; (10)

• Accuracy:

ACC =
TP + TN

TP + TN + FP + FN
; (11)

• Precision (the positive predictive value) and F1-score (the harmonic mean of the precision and
sensitivity):

PPV =
TP

TP + FP
, F1s = 2

PPV · SE
PPV + SE

. (12)

Cross-validation errors [60] were then evaluated as a measure of the generalization abilities of
classification models using the leave-one-out method.
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3. Results

Table 3 presents a summary of the mean features for classification into 4 classes (c(1)-SlopeUp,
c(2)-SlopeDown, c(3)-SteepSlopeUp, and c(4)-SteepSlopeDown) for different positions of the sensors and
selected features (the relative mean power [%] in frequency ranges 〈0, 3〉 Hz, 〈3, 8〉 Hz, 〈8, 15〉 Hz,
〈15, 30〉 Hz, and the heart rate HR [bpm]).

Table 3. Mean features for classification into 4 classes (c(1)-SlopeUp, c(2)-SlopeDown, c(3)-SteepSlopeUp,
and c(4)-SteepSlopeDown) for different positions of sensors and selected features (the percentage mean
power F〈0,3〉, F〈3,8〉, F〈8,15〉, and F〈15,30〉, and the heart rate HR [bpm]).

Position Feature c(1) c(2) c(3) c(4)

Mean STD Mean STD Mean STD Mean STD

Le
ftL

eg

F〈0,3〉 [%] 66 7 52 7 59 6 56 7
F〈3,8〉 [%] 25 5 33 6 29 5 32 4
F〈8,15〉 [%] 7 2 12 2 8 2 10 2
F〈15,30〉 [%] 2 1 3 1 3 1 3 2
HR [bpm] 137 22 129 19 142 26 122 17

R
ig

ht
Le

g

F〈0,3〉 [%] 71 5 51 7 64 6 58 6
F〈3,8〉 [%] 21 4 34 4 25 4 29 4
F〈8,15〉 [%] 6 1 12 3 8 2 10 2
F〈15,30〉 [%] 2 1 3 2 3 1 3 1
HR [bpm] 142 20 125 23 139 26 123 24

Sp
in

e1

F〈0,3〉 [%] 44 7 50 8 44 10 58 7
F〈3,8〉 [%] 41 6 36 5 42 8 29 5
F〈8,15〉 [%] 12 3 12 3 10 2 11 2
F〈15,30〉 [%] 3 2 3 2 4 1 3 2
HR [bpm] 146 16 130 18 126 25 114 18

Sp
in

e2

F〈0,3〉 [%] 39 5 53 7 39 7 64 7
F〈3,8〉 [%] 41 4 33 5 47 7 25 5
F〈8,15〉 [%] 16 2 11 2 11 3 9 1
F〈15,30〉 [%] 4 1 4 1 3 1 3 0
HR [bpm] 137 11 127 11 133 17 119 13

Le
ftA

rm

F〈0,3〉 [%] 48 6 50 6 47 5 60 6
F〈3,8〉 [%] 36 4 34 4 38 3 27 4
F〈8,15〉 [%] 13 3 12 2 12 2 10 3
F〈15,30〉 [%] 3 2 4 2 3 2 3 1
HR [bpm] 144 13 140 12 136 18 120 16

R
ig

ht
A

rm

F〈0,3〉 [%] 47 6 50 7 52 5 61 5
F〈3,8〉 [%] 38 4 36 5 34 3 28 3
F〈8,15〉 [%] 12 2 11 2 11 2 9 2
F〈15,30〉 [%] 3 1 3 2 3 2 3 1
HR [bpm] 153 11 138 11 151 20 128 14

N
ec

k

F〈0,3〉 [%] 49 7 53 8 52 7 57 5
F〈3,8〉 [%] 36 4 34 5 35 6 31 4
F〈8,15〉 [%] 12 3 11 4 10 2 10 2
F〈15,30〉 [%] 4 1 3 2 3 1 3 1
HR [bpm] 145 13 142 12 134 18 128 14

The validity of pairs of features F(i) and F(j) for separating classes ck and cj was then evaluated
using the proposed criterion specified by Equation (4). Figure 4 presents the evaluation of two classes
(c(3)-SteepHillUp and c(4)-SteepHillDown) with cluster centers for different locations of the sensors, and
associated values of the criterion function for features evaluated as the mean power in the frequency
range 〈0, 3〉Hz and the mean heart rate (Figure 4a,b) and the mean power in frequency ranges 〈3, 8〉Hz
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and 〈15, 30〉 Hz (Figure 4c,d). The results presented here show that the highest discrimination abilities
are possessed by a sensor located at the Spine2 position.
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Figure 4. The evaluation of two classes (c(3)-SteepHillUp and c(4)-SteepHillDown) presenting cluster
centers for different locations of sensors and associated values of the criterion function for features
evaluated as (a,b) the mean power in the frequency range 〈0, 3〉 Hz and the mean heart rate and (c,d)
the mean power in frequency ranges 〈3, 8〉 Hz and 〈15, 30〉 Hz.

Figure 5 presents the classification of cycling segments into two categories (A-HillUp and
B-HillDown) for two features evaluated as the mean power in the frequency ranges 〈3, 8〉 Hz and
〈8, 15〉 Hz for the sensor locations (a) the LeftLeg, (b) RightLeg, and (c) Spine2 with accuracy (AC)
and cross-validation (CV) errors. More detailed results of this classification are presented in Table 4.
Its separate rows present the accuracy AC [%] and cross-validation errors for the classification of class
A (HillUp: c(1)+c(3)) and class B (HillDown: c(2)+c(4)) for different locations of the sensors, chosen
features (F1—frequency range 〈3, 8〉 Hz, F2—frequency range 〈8, 15〉 Hz) and selected classification
methods. The highest accuracy and the lowest cross-validation errors were achieved by the Spine2
location of the accelerometric sensors and all classification methods.

Table 5 presents the accuracy AC [%], specificity (TNR), sensitivity (TPR), F1-score (F1s), and
cross-validation errors CV for classification into classes A and B by the neural network model for
different locations of sensors and 5 features F1–F5 including the power in all four frequency bands
and the mean heart rate in each cycling segment. The highest accuracy, 98.3%, was achieved again for
the Spine2 position of the accelerometric sensor with the highest F1-score of 98.2% as well.
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Figure 5. Classification of cycling segments into two categories (A-HillUp and B-HillDown) for two
features evaluated as the mean power in the frequency ranges 〈3, 8〉 Hz and 〈8, 15〉 Hz for sensor
locations in (a) the LeftLeg, (b) the RightLeg, and (c) Spine2 with accuracy (AC [%]) and cross-validation
(CV) errors.

Table 4. Accuracy (AC [%]) and cross-validation errors for classification of class A (HillUp: c(1)+c(3))
and class B (HillDown: c(2)+c(4)) for different locations of sensors, chosen features (F1—frequency
range 〈3, 8〉 Hz, F2—frequency range 〈8, 15〉 Hz) and selected classification methods : support vector
machine (SVM), Bayes, 5-nearest neighbour (5NN) and neural network (NN) methods (with the highest
accuracy and the lowest cross-validations errors in bold).

Position Accuracy AC [%] Cross-validation Error

SVM Bayes 5NN NN SVM Bayes 5NN NN

LeftLeg 81.6 75.4 85.1 89.5 0.22 0.25 0.20 0.10
RightLeg 84.7 82.6 86.8 91.7 0.15 0.17 0.19 0.09
Spine1 86.3 77.8 84.6 86.3 0.18 0.23 0.21 0.05
Spine2 92.1 89.5 93.7 96.5 0.09 0.11 0.07 0.04
LeftArm 82.1 78.6 82.9 82.1 0.24 0.21 0.23 0.18
RightArm 75.6 65.9 79,3 76.3 0.37 0.36 0.39 0.19
Neck 61.7 63.3 70.8 63.3 0.63 0.37 0.49 0.39

Table 5. Accuracy (AC [%]), specificity (TNR [%]), sensitivity (TPR [%]), F1-score (F1s [%]), and
cross-validation (CV) errors for classification into classes A and B by the neural network model
for different location of sensors and features F1–F5 (with the highest accuracy and the lowest
cross-validations errors in bold).

Position AC [%] TNR [%] TPR [%] F1s [%] CV
LeftLeg 93.3 92.1 94.7 93.1 0.083
RightLeg 95.0 97.3 91.2 94.5 0.042
Spine1 96.7 96.8 96.5 96.5 0.017
Spine2 98.3 98.4 98.2 98.2 0.042
LeftArm 93.3 95.2 91.2 92.9 0.067
RightArm 94.8 93.9 95.7 94.9 0.030
Neck 95.8 95.2 96.6 95.7 0.033

The comparison of neural network classification for two and five features is presented in Figure 6
related to Tables 4 and 5. Cross-validation errors are evaluated by the leave-one-out method in all
cases. Figure 6a shows that there is an increase in the accuracy by 6.17% on average that is most
significant for locations with the lowest accuracy, including the arm and neck positions. In a similar
way, an increase in the number of features from two to five decreased the cross-validation error on
average by 8.72%, as presented in Figure 6b. This decrease was most significant for locations with the
lowest accuracy and the highest error, which included the arm and neck positions again.
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Figure 6. Comparison of neural network classification presenting (a) accuracy and (b) cross-validation
(CV) error using two and five features for different positions of the accelerometer.

4. Conclusions

This paper has presented the use of selected methods of machine learning and digital signal
processing in the evaluation of motion and physical activities using wireless sensors for acquiring
accelerometric and heart rate data. A mobile phone was used to record the accelerometric data at
different body positions during cycling, under selected environmental conditions.

The results suggest that accelerometric data and the associated signal power in selected frequency
bands can be used as features for the classification of different motion patterns to recognize cycling
terrain and downhill and uphill cycling.

The proposed criterion selected the most appropriate position for classification of motion: it was
the Spine2 position. All classification methods, including a support vector machine, a Bayesian method,
the k-nearest neighbour method, and a two-layer neural network, were able to distinguish specific
classes with an accuracy higher than 90%. The best results were achieved by the two-layer neural
network and Spine2 position with an accuracy of 96.5% for two features, which was increased to 98.3%
for five features.

These results correspond with those achieved during cycling on a home exercise bike [4,54] with
different loads and additional sensors, including thermal cameras as well.

It is expected that further studies will be devoted to the analysis of more extensive data sets
acquired by new non-invasive sensors, enabling the detection of further motion features with higher
sampling frequencies. Special attention will be devoted to further multichannel data processing tools
and deep learning methods with convolutional neural networks to improve the possibilities of remote
monitoring of physiological functions.
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