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Abstract: Process of ready mixed concrete (RMC) delivery
is an example of multi-objective optimization due to the
conflicting objectives of the parties involved. In order to
face this problem, discrete event simulation model of the
delivery process is created with input parameters based
on the surveyed data of real processes. The model is sim-
ulated with different vehicle dispatching policies and the
results are analysed focusing on performance indicators.
The research results compared in terms of Pareto optimal-
ity indicate that employing effective dispatching strategies
can reduce both site idle time and waiting time of vehicles.

Keywords: simulation; ready mixed concrete; construc-
tion

1 Introduction

Ready mixed concrete (RMC) produced in batch plant is a
widely used material in construction industry. Along with
its advantages it introduces new type of problems related
to RMC delivery from the batch plant to the construction
site [1]. Delivery is one the key factors for the effectiveness
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of the inexpensiveness of the whole process. Late arrival of
vehicles to the construction site may cause interruptions in
concrete placement and idle time of machinery and work-
ers. On the other hand, arrivals of vehicles with short in-
terarrival times result in vehicles queuing on site with idle
times of vehicles. Minimization of the idle times of vehicles
is not only in the interest of batch plant but also contrac-
tor since many vehicles queuing in the construction site
is problematic due to limited space, environmental issues
and noise mainly in urban areas. Furthermore, RMC must
be placed within certain time from the loading in batch
plant otherwise it loses its quality and hardens.

In practice, RMC delivery planning is mainly deter-
mined by batch plant manager who estimates the vehicles
needed for the order and their dispatching interval accord-
ing to the quantity and delivery time of the concrete spec-
ified in the order. Its task is to plan the whole process op-
timally to ensure utilization of machinery and workers of
the batch plant and construction site as well.

This planning process is rather difficult because it is
influenced by uncertainty such as changing traffic condi-
tions and concrete placement rate. Well prepared plan to-
gether with possible real time operational control of the
delivery could maximize utilization of vehicles, minimize
their idle times and maximize utilization of machinery and
workers on the construction site. Delivery plan also deter-
mines the number of vehicles needed to fulfil the order.

In this paper, simulation model of RMC delivery from
batch plant to construction site is presented. The model
draws from discrete-event simulation methodology and
it is applied in a novel way to the RMC delivery process.
The contribution of this paper can be summarized as fol-
lows. Firstly, the presented model enables to choose op-
timal vehicle dispatching plan. Rather than selecting sin-
gle dispatching interval value as presented in previous
research [2-4], this paper evaluates several possible op-
tions and demonstrates the effect of different dispatching
policies [5] on the delivery process. Secondly, the simu-
lation also incorporates feedback from construction site
about current situation in delivery. The feedback enables
to promptly react to the actual conditions (such as delays
in traffic or casting at the construction site) in contrast to
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the previous research [6, 7]. Finally, policies with different
parameters than in [8] are used in scenarios and are evalu-
ated in terms of Pareto optimality. Optimization treated in
this manner takes into account both batch plant and con-
tractors interests namely maximization of vehicle utiliza-
tion and maximization of construction site machinery and
workers.

Firstly, previous research in this field is presented in
the next section. Then, process of the RMC delivery is anal-
ysed in the following section together with surveyed data
from real RMC castings in Slovakia. These processes then
serve as a basis for simulation model creation in the fourth
section with input data from the survey. Created model is
verified and used for scenario evaluation in the fifth sec-
tion. In the same section, results of simulation for various
scenarios and the real process are compared. Finally, con-
clusions are drawn in the last section.

2 Previous research

Production and delivery of RMC from the batch plant to the
construction site is an example of JIT process [9]. Several
authors employ simulation as a tool for optimization and
emphasis is put mainly on time plan of the delivery.

Simulation model with spreadsheet add-in risk anal-
ysis tool @Risk is presented by Wang [2]. This model is
used to determine the optimal interarrival time of trucks
that maximizes the utilization of concrete pump and min-
imizes the number of trucks needed. More authors [6, 7]
combine genetic algorithm (GA) (see [10, 11]) with simula-
tion to determine the arrival, departure and waiting time
of trucks. GA searches dispatching sequence of trucks from
RMC plant to multiple construction sites in order to mini-
mize waiting time of trucks on all construction sites. Com-
bination of Simulation and genetic algorithm is also used
by authors [3, 4]. Efficiency of operation in their model
is measured by idle times on sites or Total operations in-
efficiency defined as combination of idle times of trucks,
plant and site equipment. Decision variables searched by
genetic algorithm are interarrival times of the trucks and
their number.

Another authors [8] also focus on truck dispatching
interval. However, the truck dispatching interval in their
model can vary according to construction manager’s re-
sponse to traffic conditions and RMC placement rate. Dur-
ing the simulation the interval is updated regularly to
meet specified objectives (e.g. minimum number of trucks
queued at site). Unlike others, they use continuous simu-
lation modelling approach to capture information about
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work in progress. Results show that responsive schedul-
ing can achieve trade-off between site manager’s and RMC
supplier’s objectives.

RMC distribution has also captured attention of opera-
tion research, where researchers see the RMC distribution
as a vehicle scheduling problem, order assignment prob-
lem (one order can be assigned to multiple plants) [12]
or vehicle routing problem [13]. From recent optimization
and simulation approaches (e.g. [14, 15]), local search is
used by authors [13], variable neighbourhood search com-
bined with mixed integer programming is proposed by au-
thors [12]. Other works include one by Yan [16, 17] who uses
time-space network [18] and [19].

3 RMC delivery process

Generic concrete placement process consists of following
individual sub-processes:

¢ vehicle dispatching in batch plant,

¢ production and discharging of concrete into the ve-
hicle,

¢ transportation to the construction site,

¢ unloading of vehicles at the construction site,

¢ return of vehicles to the batch plant.

In order to build the simulation model, real RMC deliv-
ery operations were observed in Bratislava, Slovakia. Four
casting operations, each one lasting a whole day, of the
same type of structural element being constructed were
examined by checking delivery tickets, comprising of 170
individual deliveries (vehicle trips) in total. Obtained data
are used in the model as input values.

3.1 RMC production

RMC is produced in the batch plant which schedules pro-
duction according to its capacity and demand. Input raw
materials are aggregates, sand, cement, water and addi-
tives which are mixed together in the specified proportion
to satisfy quality requirements. Observed batch plant has
a RMC production capacity of 60 m3/h.

The production of RMC starts by discharging of indi-
vidual ingredients into the mixer where they are mixed for
specified amount of time. Produced RMC is then loaded
into the truck positioned under the mixer. After loading
the truck drives to recycling station where excess concrete
is washed off.

Truck driver receives a delivery order from plant dis-
patcher and the truck leaves the batch plant. Survey re-



122 —— M. Weiszeretal.

sults showed that average time for these processes is 4 min
and the average dispatching interval was 11.66 min. During
the survey, no intended dispatching policy was applied.

3.2 Transportation

The transportation process is determined by specific prop-
erties of RMC. The trucks cycle between the batch plant
and construction site until the whole volume of ordered
concrete is transported. During transportation, trucks with
revolving drums constantly mix the RMC. The main param-
eter of the vehicles is their capacity. In the observed pro-
cesses, truck capacity ranged from 5 m> to 9 m>. Propor-
tion of individual capacities (drum volumes) is shown in
Figure 1.
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Figure 1: Histogram of truck capacities.

Transportation of RMC is heavily influenced by current
traffic conditions such as traffic congestions. In observed
processes, average travelling time reached 24.46 min with
standard deviation 5.74 min. The average travelling time
takes into account the distance between the plant and the
construction site and its stochastic nature reflect the traf-
fic conditions. A normal distribution of travelling time is
assumed in this paper based on previous research [20, 21]
and empirical fit of the data compared to other distribu-
tions. Histogram of surveyed data with fitted normal distri-
bution curve is depicted in Figure 2. Stochastic travelling
times cause a deterioration of the initial interval of con-
secutive vehicles from the batch plant. Therefore, vehicles
may arrive at the construction site with different interar-
rival times.
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Figure 2: Histogram of travelling time with fitted normal distribution
curve.

3.3 Unloading of RMC

After the arrival of the vehicle, it waits in a queue until
concrete placing machinery (pump) is ready to service it.
In observed processes, mobile pump was used with capac-
ity higher than workers capacity to place concrete. Unload-
ing performance determines the time to unload one vehi-
cle. The performance is not constant but varies and it was
observed that it was the determining factor affecting the
unloading time rather than volume of RMC that vehicle
carried (Figure 3). Average unloading time for one vehicle
ranged from 5 min to 20 min. The variation in unloading
times is due to the specific factors related to the site such
as site layout, height or shape of pouring. After unloading,
vehicles return to the batch plant for next delivery.
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Figure 3: Histogram of unloading times for each day.
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Figure 4: Simulation model scheme.

4 Model description and
methodology

This paper adopts Discrete-event simulation technique
[22] which was implemented in Extendsim simulation
package.

The basic structure of the simulation model of the RMC
delivering process is depicted in Figure 4. The simulation
begins with the generation of the vehicles. Resource of
vehicles is a resource block from which the vehicles are
drawn into the Queue 1. Queue 1 is a First-in-first-out type
with priority for used vehicles. This ensures that vehicles
which returned from the delivery are the first one to be
used. This way, only the number of vehicles needed is
present at the time in the simulation model. New vehicle is
sent to delivery if there is no returned vehicle in the Queue
1.

The batch plant is modelled as a single server activity.
The service time is equal to the required dispatching inter-
val. It is assumed, that during this time, all activities tak-
ing place in the batch plant (mixing, loading, washing) are
completed. Vehicles have their attribute of concrete quan-
tity updated. Separate attribute from vehicle capacity is
used, since last vehicle may be assigned lower quantity of
concrete than its capacity. During simulation, the quantity
of produced and loaded RMC is summed. When the sum is
equal to the ordered quantity, batch plant stops servicing
vehicles.

Infinite server represents travelling from the batch
plant to the construction site. Each vehicle receives service
with processing time equal to the travelling time. Travel-
ling time is generated as a random number with normal
distribution, mean and standard deviation obtained from
surveyed data.

Vehicles which arrived to the construction site queue
up in the Queue 2 waiting to be unloaded. Since only one
vehicle at the time can be unloaded, unloading process is
modelled as a single server. For analytical purposes, there
is an assumption of no maximum waiting time for vehicles
after the RMC loses its quality. Such a constraint would

be important particularly in extreme weather conditions
(cold or hot). However, the data used in this study was ob-
tained during normal weather conditions.

Empty vehicles travel back to the batch plant for next
deliveries. The simulation ends with the last vehicle de-
parting from the construction site when the quantity of or-
dered RMC is transported.

4.1 Pareto optimality

In this study, we consider the minimization of 1) construc-
tion site idle time which is mainly the interest of the con-
tractor and 2) waiting time of vehicles which is a concern
for the batch plant. As explained in Section 1, high values
of construction site idle time and waiting times of delivery
vehicles cause inefficiencies for both construction site and
batch plant, respectively. In contrast with single-objective
problems, multi-objective optimization problems have to
deal with more objectives at the same time. Since optimiza-
tion of the decision variable with respect to just one ob-
jective can often lead to worse results in other objectives,
simultaneous approach is needed and single solution to
multi-objective problem often does not exist at all.

Therefore, the aim of multi-objective optimization is to
find a set of solutions each of which minimizes the objec-
tive functions at an acceptable level. Predominant concept
in determining an optimal solution in multi-objective ap-
plications is Pareto optimality [11, 23-28]. In this concept,
solutions can dominate each other.

A solution x; is said to dominate the other solution x5,
if:

1. The solution x; is no worse than x, in all objectives.
Thus, the solutions are compared based on their ob-
jective function values, and

2. The solution x; is strictly better than x, in at least
one objective.

Solution, that is not dominated by any other solu-
tion in solution space is called Pareto-optimal. A Pareto-
optimal solution cannot be improved in any objective with-
out worsening in at least one other objective. The all
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non-dominated solutions in solution space constitute the
Pareto optimal set. The corresponding objective functions
values of the Pareto-optimal set in the objective space form
a Pareto front.

5 Computational results

5.1 Verification and validation of the model

Reliability of the simulation model can be verified by com-
paring actual surveyed data and the model output. The
model was simulated 100 times for each day with input
data based on survey results. Several performance output
parameters were collected as summarized in Table 1. The
surveyed data and simulation results are not identical due
to the stochastic nature of the process and possible survey
bias. For example, the average of surveyed site idle time is
30 min and simulated result is 52.15 min. When compared
to the average duration (533.75 min and 516.78 min), the
site was idle for 5.62% of time for the surveyed data and
10.09% for the simulation. Similarly, the total average wait-
ing time of vehicles (589.75 min and 617.08 min) is 110.49%
of the duration for surveyed data and 119.41% for the sim-
ulation.

For analytical purpose, the model accuracy is suffi-
cient, the simulated results approximate surveyed data
and the model can be used for further testing. The simu-
lated results are further referred to as Base case.

5.2 Simulation results for different
dispatching policies

The model was simulated with the same travelling time
distribution, same fleet of vehicles (represented by vehicle
capacities) and same unloading time distribution for each
day but under different vehicle dispatching scenarios to in-
vestigate the effect of individual policies on selected perfor-
mance criteria.

Firstly, constant dispatching interval of vehicles from
the batch plant was employed (Scenario 1). For each day,
same value of dispatching interval was used and the test
was repeated with increasing value of the dispatching in-
terval. Average of the simulated results of the four days
were then compared to each other.

Secondly, variable dispatching interval from the batch
plant with feedback from the construction site was
adopted. Two cases were simulated, one with queue up-
date time 30 min (Scenario 2) and the second with 15 min
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update time (Scenario 3). The information about the queue
length at the construction site serves as an input for simple
decision process of modifying the initial dispatching inter-
val. If the queue length at the construction site is greater
or equal to two, the interval is increased by one minute. If
the queue length is equal to zero, the interval is decreased
by one minute. However, it cannot drop below the initial
interval. This scenario represents a situation where a con-
struction site manager checks the length of vehicle queue
on regular basis and reports back to the batch plant to ad-
just the dispatching interval accordingly.

Finally, variable dispatching interval from the batch
plant with 30 min update about the queue length from the
construction site was used (Scenario 4). In contrast with
previous scenarios, in this case the dispatching interval
could go below the initial value. The simulation results are
summarized in Table 1.

The simulation results confirmed that the dispatching
interval has significant impact on all output performance
indicators. Longer dispatching interval caused increase in
duration of the process in all scenarios. This is mainly due
to higher site idle times with high dispatching interval val-
ues when the construction site has to wait for vehicles and
concrete placement is interrupted. On the other hand, if
the dispatching interval is short, vehicles tend to queue at
the construction site and high vehicle idle times can be ob-
served. The queueing of vehicles in case of a short interval
is shown in Figure 5. A comparison of vehicle waiting time
for different intervals is in Figure 6.
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Figure 5: The length of vehicle queue at the construction site (day 4,
constant interval 10 min)

The results also confirmed that there is a trade-off be-
tween site idle time and vehicles idle time. Moreover, the
results imply that number of vehicles needed to complete
the order is related to the dispatching interval. With longer
dispatching interval, it was possible to transport the or-
dered volume of RMC with less vehicles than in the case
with shorter dispatching interval.
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Figure 6: Vehicle waiting time at the construction site, day 1, con-
stant interval

As mentioned in Subsection 4.1, in multi-objective op-
timization problems, single optimal solution may not exist
at all. However, a list of a few solutions in terms of Pareto
optimality could be very helpful for the decision maker.

Based on his or her preferences, the decision maker
could choose the right trade between conflicting objectives.
Comparison of different dispatching policies can be made
by evaluating the relationship between site idle times and
vehicle idle times. The simulation results for these two per-
formance indicators are compared in Figure 5. The data
points are labelled with value of the dispatching interval.

Scenario 2 and 3 with variable dispatching interval
with 15 and 30 min update times when decrease below
the initial interval is not allowed show similar results in
comparison with constant dispatching interval case with
higher interval values (13 and 14 min). This is due to the
fact that with higher intervals, queue length is often equal
to zero and the model tries to decrease the interval by one
minute. However, since decrease below the initial interval
is not allowed, the interval stays the same resulting in the
same behaviour as with constant interval policy.

The policy with variable dispatching interval with 30
min update time when decrease below the initial interval
is allowed used in Scenario 4 showed poor performance in
vehicle idle times for all interval values. This could be due
to high uncertainty associated with travelling times and
long distance between batch plant and construction site
resulting in long time to adjustment of the interval to make
an effect. The uncertainty is therefore an important fac-
tor and not considering it could compromise the planned
schedule [6, 7]. The comparison of Scenario 2 and 4 is de-
picted in Figure 7 and 8, respectively. Scenario 4 enabled
low values of dispatching interval which resulted in a long
vehicle queue early on (around time 100 min.) in contrast
to Scenario 2. As can be seen in

Figure 7, when no decrease below initial interval was
allowed, this initial value prevented the dispatching inter-
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val from low values and higher vehicle idle times associ-
ated with them. These observations indicate although the
feedback could effectively react to uncertainties, in con-
trast to [8], a more sophisticated policy such as presented
in this paper is needed to achieve a better
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Figure 7: Interval and vehicle queue length for Scenario 2, for day 1,
Initial interval 10 min
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Figure 8: Interval and vehicle queue length for Scenario 4, for day 1,
Initial interval 10 min

The greatest improvement in performance indicators
of Scenarios 2 and 3 in comparison with constant interval
Scenario 1 is achieved with 10, 11 and 12 min dispatching
interval. Considering fitted splines (Figure 9), points for
variable interval scenarios dominate the constant interval
points in the left part of the graph. These results indicate
that even if the interval is optimised such as in the previous
research [2-4], a constant interval policy is outperformed
by a policy with feedback. Variable dispatching interval
policy used in Scenario 3 with initial interval of 11 min en-
abled to improve the site idle time by 7.60% and vehicles
idle time by 6.31% compared to constant interval policy in
Scenario 1.

In all scenarios, applied policies achieved better val-
ues of performance indicators than in Base case. The sim-
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ulation results indicate that suitably chosen dispatching
policy can reduce waiting time of vehicles and site idle
time in the same time.

900
1 o A0 —e— Scenario 1
] —#— Scenario 2
800 .
1 " Scenario 3
. —+— Scenario 4
5700 o 12 Base case
&
3600
2
s
< 500 o
S
o
'§400—
&n
g ]
300 4
=7
200 4
4
100 “—/——+—F—"——7———7T—7T T
0 20 40 60 80 100 120 140 160

Site idle time (min)

Figure 9: Comparison of simulation results and Pareto fronts

6 Conclusion

Managing real world RMC delivery process is a challeng-
ing task due to the uncertainty involved. Furthermore, par-
ticipating partners have different and conflicting objec-
tives. Developed discrete event simulation model tries to
improve the whole process by simultaneously minimiz-
ing waiting time of vehicles and site idle time. To achieve
such effect, various dispatching policies were employed
and their results investigated. Comparison of the simu-
lated performance indicators in terms of Pareto optimal-
ity showed that variable dispatching interval adjusted ac-
cording to the feedback from the construction site with-
out decreasing below the initial interval value performed
better than other policies including constant interval dis-
patching. Moreover, variable and constant dispatching in-
terval achieved improvement in both performance indica-
tors compared to the base case.

Although the simulation model was created with input
data based on survey of real processes, it can be adapted
to different operation conditions by modifying the input
values. The simulation model could be then used as a de-
cision supporting tool for selecting the suitable dispatch-
ing policy for the RMC delivery process. Similarly, an esti-
mation of number of vehicles needed for the order could
be made based on simulation results. Rather than search-
ing for single optimal dispatching interval value, explor-
ing Pareto optimal solutions as in this research helps the
decision maker to investigate various scenarios. This way
a trade-off between different objectives can be made.
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The future research could investigate more sophisti-
cated methods of controlling dispatching interval of vehi-
cles incorporating feedback from the construction site. Col-
lecting further data could also improve the accuracy of the
model. Finally, a real-world testing of the proposed con-
trolling policy would help to gather valuable feedback and
fine-tune the model.
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