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ABSTRACT. We consider the half-linear Euler-type equation witterms
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in the subcritical case wheh< u < i, andp > 1. The solutions of this nonoscillatory equation
cannot be found in an explicit form and can be studied onlyrgstgtically. In this paper, with
the use of the perturbation principle, modified Riccati teghe and the fixed point theorem, we
establish an asymptotic formula for one of its solutions.

1. INTRODUCTION

The aim of the paper is to find an asymptotic formula for a notlasory solution of half-
linear Euler-type differential equation
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for0 < u < p,, t € [T, 00). The operator is defined asb(z) := |z~ tsgnz, p > 1,n € N,
7, andy, are the constants

(p—1Y" 1 p-1\""
Tp T D ) ,up-—2 D

and Log ;¢ are products of iterated logarithmic functions:

J
Log ;t := Hlogk t, log,t :=logt, log, t :=log,_,(logt), k > 2.
k=1
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The studied equatior](1) is a special case of a general ihaki# second order differential

equation

Llz] := (r(t)®(2")) + c(t)®(x) = 0, )
wherez = xz(t), functionsr(t), c(t) are continuous and(¢) is positive on the interval of con-
sideration. The solution space bf (2) is linear (but not &) and contains either oscillatory or
nonoscillatory solutions. Within the studies of equat@hif some neighborhood of infinity, i.e.,
t € [T, 00) for someT, its solution can be classified as oscillatory, if it has gdinitely many
zeros tending to infinity, and nonoscillatory otherwise cilstory and nonoscillatory solutions
cannot coexist, hence half-linear equations are said tstidaiory or nonoscillatory according
to behavior of their all solutions (for more information gbe basic literature [3] summing up
the results for half-linear equations up to the year 2005).

Describing asymptotic properties of solutions is one ofrtteen tasks of qualitative theory of
differential equations. Asymptotic behavior of solutioa®ften being classified with the use of
the theory of regularly varying functions in the sense ofdfaata. Let us recall the following
notation (for more information see for example the monolfdg]).

A measurable functioif : [a, 00) — (0, 00) is called regularly varying (at infinity) of index
(and we writef € RV (1)) if

lim FA) _ AU for every\ > 0.
If ¥ = 0, f is called slowly varying. The Representation Theorem (seexample [[14]) says
that f € RV (¢) if and only if it can be expressed in the form

= st e { [ U2 as},

wheret > a for somea > 0, ¢ and« are measurabe functions such that; ... ¢(¢) is finite
and positive andim; ., 1 (t) = 0.

Half-linear equations have been studied in the framewonegtilarly varying functions for
example by the group of authors Jaro$, Kusano, MandjldMiaric, Tanigawa andRehak, see
[7,18,19,[14] and references therein. Considering the latgsérs which sum up, improve and
extend previous results in this fielehak in[[14] provided an exhaustive overview of asymptotic
formulas for (normalized) regularly varying solutions @j (n the case whenis positive and:
negative onT’, oo). Furthermore, Manojlog and Kusano ir [8] established asymptotic formulas
for nonoscillatory solutions of{2) depending on the ratale€ay toward zero of the positive
function

Qo =t /Ooc(s)ds -C

ast — oo, whereC' < p%?l However, the results are inapplicable to our equafibrb@gause the
constantC in this case does not satisfy strict inequality, but equalihe reason is that equation
(@) lies on the threshold between oscillation and nonadalh. For such equations it was shown
for example in[[11] that it can be useful to regard the stugigdation as a perturbation of a
nonoscillatory equation with less terms.
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Equation [[1) can be seen as a perturbation and in some sestsa gkeneralization of the

half-linear Euler equation
f)/

(@) + ;@) =0, 3)
The critical coefficienty = ~, is its oscillation constant: replaced by a greater constaetEuler
equation becomes oscillatory, and fgrand smaller constants it is nonoscillatory. In view of
this property, one can say that the Euler equation is camditly oscillatory. Equatior{3) in
the casey = v, has a pair of linearly independent nonoscillatory solwiee for examplé[3],
Chapter 1.4.2)

w1(t) =7, aa(t) =t logr(t)(1+0(1)) ast — oco.
If v < 4, then [3) has a pair of solutions

Tio = t,\‘{le’
where)\, , are zeros ofA|? — A + Iﬁ = 0, as can be seen by a direct substitution.
The Euler equatiori{3) with the critical constant can beyrbed so that the resulting equation
is again conditionally oscillatory. Such a one term perdtidn leads to the half-linear Riemann—
Weber equation

"y Tp H _
@) + (24 i) e =0, @

whose oscillation constant js= 1,. In this critical case fop, = 1, equation|(#) is nonoscilla-
tory and possesses a pair of linearly independent solufaes[5])

x1(t) = 5 log% t(l+o(1)), ()= £ log% tlog%(log t)(1+o(1)) ast — oc.

In the subcritical case far < p < p, the asymptotic formulas of a pair of linearly independent
solutions were found in[11], namely

212(t) =77 (logt)"2(1 + o(1)) ast — oo,

1-p
wherev, , = % (%) A2 and ), , are zeros oij2 — A+ u = 0. These formulas can be
P

obtained also as a special case of more general resultsopioy#] (a link between these two
approaches can be found In[13]).

Finally, the Euler-type equation (also called the geneealiRiemann-Weber equation) with an
arbitrary number of perturbation ternis$ (1) was studied]rafi#l it was shown that its oscillation
constant is agaip = p, and that the equation

N e N

j=1
has a pair of linearly independent solutions
_ 1 _ 1 2
T (t) = £ Loght(1+o0(1)), xo(t) = £ Logntlog, t(14+0(1)) ast— oc.

Notice that all the above solutions are regularly varying@ftain indexes and the functions
of the form(1 + o(1)) are slowly varying functions (see [11,112]).
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In this paper we consider the subcritical case df (1) wheny < 1, and reveal asymptotics
of one of its solutions. Our motivation comes among othesmf{13], where the asymptotic
formulas for solutions of (1) were proposed in the case 2. Let us point out that also further
generalizations of (1) are a subject of recent studies/5&4 pnd references given therein.

2. PRELIMINARIES
An important role in the proof of the main result is played bg so-called Riccati technique,
which is based on the following facts (see for example [3])(t) # 0 is a solution of[(2) orT,

thenw = r(t)® (f;/((f))> is a solution of the half-linear Riccati equation

wlt) +eft) + (p = D@l =0, g= 2. (6)
Within the perturbation approach, the Riccati equatidn ¢6hsufficient for our purposes. The
way how to employ the idea of perturbation in the Riccati equais in making its following

modification. Denote for a positive differentiable functie(t)

R(t) =r(t)R* @) (O, G(t) = r()h(t)D(H'(1)). ()
Thenu(t) = h*(t)w(t) — G(t) is a solution of the so-called modified Riccati equation (see f
example([2])

V' (t) + h(E) L)) + (p — Dri 1A () H (v, G) =0, (8)
where

H(v,G) = |v+G|?—q® HG)v — |G|
According to [1], equation[{8) is in some sense close to theadled approximate Riccati

equation

/() + h(®)L[A)(E) + 5 Rq(t>u2(t) =0, ©)

where the nonlinearity is only quadratic. The estimatesoo¥ blose to each other are the solu-
tions of [8) and[(P) can be done with the use of the calculatfoom the proof of Theorem 2 in
[4] (see also[[1], Lemma 1), which we formulate here in theecafsour interest for(¢) = 1,

h@)::tﬁf,6¥::2up::I;,}z=:(2:l>pZt

p

Lemma2.l. Ife € (0,1) and

‘I(q‘z)‘ (14¢)13 for ¢ >3,

W2 (1 — )13 for ¢ <3,
then for|v/2u,| < ¢
(r—1) L o _ Lbe),
H(v,I’ < 1
2D hr) - | < 2P (10)

3—2
wherel, = (p;1> "
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3. MAIN RESULT

The main result of our paper providing an asymptotic formafla solution of [[1) reads as
follows.

Theorem 3.1. Equation(T) with 1 € (0, i) has a solution of the form

2

a(t) =t Logn (tlogd t(1+0(1)) as t— oo, (11)

1 1
Where)\—§+§,/1—ﬁ.

Proof. We consider equatiori](1) to be a perturbation of the Euleatgu (3), which is the
reason for choosing its solution as the functioin the modified Riccati equationl(8). The
modified Riccati equation[8) fork1) with

h(t)=t"7 ,G(t) =T, = 2u, (12)
reads as

n—1
1
v(t) + Pr P P H(),T,) =0 13
OF 2 gt Loz b7 O 13)

and the approximate Riccati equati@h (9) is the in the form

n—1

1
U (t) + Po B 20 =0. (14)
— tLog?t tLog2t  Apy,t

One can see that, with the use of the substitutien 4upt%, this is the classical Riccati equation
of the linear second order equation

n—1
H 1%
duty' (1)) + P+ t) =0,
(4pyty/ (1)) (jﬂmg?t g7 | V)

which can be rewritten, using the notation- }i—; as

n—1
1 T
ty' (1)) + + t)=0. 15
(ty'(?) (; AtLog3t ~ 4tLogit y(t) (15)
The transformation of variabledt = ds, t = ¢*, s = logt leads to the equation
n—2 -
/l
+ s)=0.
v ( z_; 452 Log S 432 Logi_ls) y(s)
First we use the change of variable and substitutienc*' | y(s) = \/sz1(uy) and ifn > 2, we
continue in the same manner with = e“+', z;(u;) = /u;zit1(uipr) fori =2,...,n —1to
obtain the equation
-
zg_l(un_l) + an_l(un_l) = 0

n—1
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This equation has a couple of solutions ;(u,_1) = '

1, Where), , are two (real) zeros of
the quadratic equation

Noar =g Ko (16)
4 441

Backward transformations result into the couple of solioh(13)

Y1,2 <t> =V LOg n—lt (10gn t))\l’Q

and solutions of[(14) are

Yy’ Log, it Aiologht
=4u,t= =4u,t :
B TR (2 Log, it  log,t
—9 Ti L + 4pp\ ! (17)
— Log ;t Fr2 e ot

=1
Observe that fop € (0, 1,) the zeros\, », of (18) are in the interval0, 1). The bigger one
M =5+ 3,/1— £ liesinthe interval 3, 1).
Now let us introduce the function

o(t) = / uils) 4 (18)

S

and the set of functions
V={vel[l" c0),v(t) —ui(t)] < Kep(t)},

whereT™ and K will be specified later. Since(t) = o(u;(t)) ast — oo andu(t) is positive
for larget, there existg}, such thatu, (t) — Ky(t) > 0for ¢ > Tj.
To find a solution of the modified Riccati equatignl(13), we ¢ar the integral operator

oo [n—1 00
Ip p p—1
F)(t) = d Hw,I'))d 19
(v)(t) /t <E SL0g§S+SLogiS> S+/t —H(v,T,)ds (19)

j=1

and show that it has a fixed point on the ¥et

First we show that the integrgl™ p%lH(v, I',) dt converges. B} such that the estimate
(10) holds. Fow € V andt > T, we haved < v(t) < us(t) + K¢(t) and since the functiof?
is increasing inv for v > 0, we observe (using Lemnla 2.1 and suppressing argumentsptha
t > maX{T(),Tl}

p—1 ®lp—1 1
| rneras | ‘%H<v,rp>—4

Fop
oo .3 oo 2
ng(g)/ %dt+/ 4tht
P

00 3 00 2
SLb(a)/ wdt—i_/ %dt<o®,
Hp

1}2

|
dt + / — % dt
4ppt

sincep(t) = o(uy(t)) ast — oo and [~ “ti dt < oo.
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Next we show that for suitably chosen constafitand7™ the operatorF maps) into itself.
Using (19) together witH (14), Lemnma 2.1 and estimates, @fe have for large enough

“p—1 1 [~
IF(v)()—ul()|—/t - H(v,rp)ds_%t fds‘

© 1 1 oo .2 1 oo [,,2 2
< / P H(U,Fp) ds — — U_ dS’ + / |U Ul‘ d
t S Ay Jpo S dpip Jy S

oo .3 1 oo _
< Lb(s)/ s+ / (s + )l = o]
t S t

41, B

[e'e) 3 [e'e)
< Lb(s)/ (w1 + Ko) ds 4+ 1 / (2uy + Kp)Kp ds.
t S Aptp S

The first integral satisfies

/OO (en ¥ Ko ds = /OO i ds + /OO e LR e 1 Iy ds
t &) t S t S
< p(t) +o(pt) =e)(1+o(1)) as t— oo.

Next, we have

KQ 2
/ Ly P o(p(t)) as t— .
t s

Finally, we show that

1 ©2u K
— NP 4s < Khp(t). (20)
4py Jy S
Up to this point, first we show that
u(t
O < apr 0 @)
for ¢ large enough. Indeed, usirig{17) and some arrangementsriveat the inequality
n—1 n—1
1 1 A (N —1) 1
< (2M—1 2(A\1—1 . (22
0= @N )221 Log?t—i_ (A )1<i<]Z<n_1 Log ;t Log ; ~t+ Log,, ZZ Log ;t (22)

Observe that\, — 1 € (—31,0), \y(\ — 1) = — i (O —I)and2)\; — 1 € (0,1). Since
Zl<z<]<n 1 Log, tLog T Zz 1 Log{(%(andz:z 1 Log; tLog t O(Zz 1 Lo 2t>’ there ex-

istsT5 such thatlnequallt 2) and aldo (21) is satisfiedtfor 7,. Now, mequalltyIIle) implies

/too ui(s) ds < 2p,\ /too(—Qul(s)u’l(s)) ds,

S

which is equivalent to
p(t) < 2upMui(t).
Multiplying by = leads to the integral inequality

/oo ui(s)e(s) ds < 20, /°° ui(s) ds

S S




8 ZUZANA PATIKOVA

and with the use of the definition ¢f (18) one can see, that (20) holds far Ts.
In total, we have
[ F(0)(£) —ua(t)] < (Lb(e) + KA1+ o(1)) ().
Let 75 be so large that the term o(1) is less than or equal to ¥ for 75. Then for7T* =
max{Ty, T1, Tp, T3} and for K > 251 (suchK exists since\; € (4, 1)) we obtain
[ F(0)(t) —ur(t)] < Kop(t).

HenceF mapsV into itself. All the other assumptions of the Schauder-ombif fixed point
theorem are satisfied tod (V) is bounded and since the derivative§v)(¢) are bounded on
compact subintervals 97, co), the operatofF (V) is also equicontinuous. Hence the operator
F(v)(t) has a fixed point

F(o)(t) = v(t)
onV, for whichv(t) = u; + O(¢(t)). The functionv(t) now generates a solution of the half-
linear Riccati equatiori{6)(t) = ® (£) = h?(v + &), from which one can express a solution

of (@) in the formz(t) = 6:1:p{ft d~!(w(s))ds}. In more detail, according t6 (I12) arid (17),

2/ (t) . Log! .t log! t
t) =0 = 20, t? 1 +t—— + 2t n t .
w(t) =0 (2] =2 (1 o ot 2 Ot

Applying the inverse functio®~! we have

7O ool () Losi

n

log!, ¢

2tA
Log, 4t + 1log t

n

x(t) p t
and using the power expansion formula we arrive at

() p-—11 Log! t
=——— |1 — ) —
x(t) P t< +la )L
—11 1 Log’ .t 2\ log" t t
_p—1l 1lLog, b 2Mlog,t [ e(t))
p t pLog, it p log,t t

Finally, integrating gived(11). O

v owm)ql

log’ t
2tA1 (g —1)—=
0g ,_1t +2thilg )log t

n

+0(6(0) )

4., CONCLUDING REMARKS

1. Within the framework of regularly varying functions wencaay that the solutiod _(11) is a
regularly varying function of indeﬂ;—1 (see the properties of indexes described for example in
the Appendix of([14]) and the functiofl + o(1)) in its formula is a slowly varying function.

2. The so-called approximate Riccati equatiod (14) has mezlily independent solutions, u.
described by[(17). To get the solution bf{(13) and consedyen{I), we used.; - the one with

the larger zero of(16). The natural question arises whetlsen., with the smaller zero of (16)
could be used to find the second linearly independent solatidl). This remains as an open
problem.
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