
Central European Journal of Operations Research
https://doi.org/10.1007/s10100-019-00626-z

Circular economy implementation in waste management
network design problem: a case study
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Abstract
The paper presents a new approach to support the strategic decision-making in the area
of municipal solid waste management applying modern circular economy principles.
A robust two-stage integer non-linear program is developed. The primary goal tends
to reduce the waste production. The generated waste should be preferably recycled as
much as possible and the resultant residual waste might be used for energy recovery.
Only some waste residues are appropriate for landfilling. The aim is to propose the
near-optimal waste allocation for its suitable processing as well as waste transporta-
tion plan at an operational level. In addition, the key strategical decisions on waste
treatment facilities location must be made. Since waste production is very often hard
to predict, it is modeled as an uncertain decision-dependent quantity. To support the
circular economy ideas, advertising and pricing principles are introduced and applied.
Due to the size of available real-world data and complexity of the designed program,
the presented model is linearized and uncertainty is handled by a robust optimiza-
tion methodology. The model, data, and algorithm are implemented in MATLAB and
Julia, using the state-of-the-art solvers. The computational result is a set of deci-
sions providing a trade-off between the average performance and the immunization
against the worst-case conditions.
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1 Introduction

The current volume of waste produced worldwide has caused serious debates on waste
treatment effectiveness (Martin et al. 2015). A considerable amount of waste is treated
inefficiently and non-environmentally friendly (Ghiani et al. 2014). However, waste
may not only represent an environmental and economic burden, but also an oppor-
tunity as a secondary source (Eiselt and Marianov 2015). The circular economy is
increasingly seen as a possible solution to address sustainable development. It pri-
oritizes waste treatment methods in the order of reduction, reuse, recycling, energy
recovery and disposal of waste (Geissdoerfer et al. 2018). Implementation of such
circular economy into existing waste management (WM) network requires not only a
need of new trends and methods in waste treatment but also research proposing new
integrated modeling approaches to such a complex WM problem.

From the European Union (EU) perspective, this especially holds for the countries
of Central and Eastern Europe (Blumenthal 2011)—with the Czech Republic being
a typical example. In 2014, based on these trends, the Ministry of the Environment
of the Czech Republic proposed a reflection process in the Waste Management Plan
of the Czech Republic for 2015–2024 (MECR 2014). The aim is to substitute the
lower levels of the hierarchy of WMwith more preferable WM approaches. For these
reasons, the Czech Republic has already implemented new legislation, which will
come into effect in 2024, stating that waste disposal into landfills is restricted by
banning recyclable and utilizable waste. However, this is not only restricted to the
Czech Republic, but rather a commitment of EU countries (EPRS 2016); 60% of the
produced municipal solid waste should be used for material recovery until 2030. The
aim is to establish an integrated municipal (mostly municipal, but not only) solid WM
(McDougall et al. 2008), which is a contemporary and systematic approach to WM in
a sanitary and environmentally friendly manner (Asefi and Lim 2017). The effort is
clear: to maximize material-based waste utilization. Otherwise, if it is not possible to
do sowith somewaste suitable for material recovery (e.g., for some technical reasons),
there should be efforts made for its utilization as energy, consisting of only a necessary
minimum current coming from the cycle in the form of residue. This represents a
comprehensive system for optimizing production processes and technologies and the
consumption and management of natural resources and waste. The system of circular
economy requires adequate processing infrastructure and a sophisticated approach
towards planning and management. To effectively plan new projects in the field of
WM, it is necessary to have comprehensive computational tools, which are based on
advanced mathematical methods (Ghiani et al. 2014).

AsWM is a complex task, there are numerous methods to assess the WM (e.g. cost
benefit analysis, life cycle assessment or multi-criteria decision-making process), that
were reviewed in Allesch and Brunner (2014). Ghiani et al. (2014) review the long
history of the utilization of operations research inWM and pinpoint the main strategic
and tactical issues regarding the models of WM systems. The following points are
among the crucial ones related to the WM decision-making process:

– Waste treatment hierarchy: The considered waste hierarchy prefers the so-called
waste prevention (Corsini et al. 2018). Then, recycling and potential material
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recovery is to be maximized together with energy utilization of non-recyclable
residuals while landfilling is the least preferable option and should be limited to
the necessary minimum (Asefi and Lim 2017).

– Facility location: The facility location problem is one of the most recognizable
optimization problems (see, e.g. Dias et al. 2008). A comprehensive survey of the
facility location models in WM is provided by Eiselt and Marianov (2015).

– Uncertain waste production: The main uncertainty within the WM models lies in
the amount of waste produced. Two suitable approaches are possible—a stochastic
programming one (Gambella et al. 2018) and a robust optimization one (Hu et al.
2017).

– Waste production modeling: The produced waste can be modeled and predicted
depending on the other considered variables: the waste prevention and the ratio
of waste separation. Pricing-like (De Jaeger and Rogge 2013) and advertising-
like (Khouja and Robbins 2003) principles are introduced and used to model the
business environment (Hrabec et al. 2017).

– Waste transportation: The WM logistic models are surveyed in Bing et al. (2016).
When designing the supply chain network, the use of different modes of transport
(road/rail/water) brings both economical and ecological benefits (Inghels et al.
2016; Lam et al. 2013).

A common feature of the state-of-the-art models is that they cover only a subset of the
mentioned issues. There are many WM models focusing exclusively on the facility
location problem (Alçada-Almeida et al. 2009; Tavares et al. 2011). The papers that do
incorporate more of the mentioned issues, like Eiselt and Marianov (2014) and Asefi
andLim (2017), do not consider any uncertainty in the input data. To quoteGhiani et al.
(2014): “As can be easily seen …many research directions would require additional
work. In fact, the existing literature focused on strategic SWM issues is extremely rich
of sectorial contributions aimed at finding the optimal solution for reduced problems
of the more complex and general problem…”.

There are, currently, two widely used ways of incorporating uncertainty into opti-
mization models. The stochastic programming approach is exemplified by Gambella
et al. (2018) (tactical WM problem, facility location and waste flow allocation)—the
resulting model is two-stage (but multi-period) and the uncertainty is modeled by a
scenario tree based on real world data. The crucial assumption of this approach is that
the distribution of the uncertain parameters is known (or can be approximated by an
appropriate selection of scenarios). The objective is then some risk functional—most
widespread being the expected value, but other possibilities exist (such as the Value-
at-Risk or the Conditional-Value-at-Risk). In addition, the use of a large number of
scenarios with possible recourse actions (in order to obtain a better approximation of
the problem) brings inherent computational difficulties. Or, as the authors of Gam-
bella et al. (2018) conclude: “In addition, a different stochastic formulation could be
obtained without allocating the waste flow during the planning phase: all the waste
would then be treated via recourse actions. This massive introduction of recourse
variables would make the formulation very challenging computationally.” The second
option is to use the robust optimization framework, as in Berglund and Kwon (2014)
or Hu et al. (2017). The main differences being that the uncertainty is modeled by an
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Fig. 1 General scheme of the proposed integrated system

uncertainty set (which can be seen as a support of the uncertain parameter) and the
objective is to mitigate the impact of the worst-case possible. This approach is very
well suited for the situations when the information about the uncertain parameters are
limited (e.g. the lack of historical data), see Gulpinar et al. (2013) and Ben-Tal et al.
(2009). Both Berglund and Kwon (2014) and Hu et al. (2017), however, consider only
the box-budgeted uncertainty sets, which produce rather conservative solutions, but
the resulting expressions remain linear (Ben-Tal et al. 2009).

The novelty of this paper lies in several aspects. Themathematical model developed
in Sect. 2 combines the pricing and advertising aspect in waste prevention and recy-
cling, the facility location problem of new WtE plants, landfilling and WtE treatment
options, and the design of a transportation network that uses both the road and rail
transport options (see Fig. 1 for the illustration of the integrated system). The nonlinear
(nonconvex) expressions that describe the effectiveness of recycling and prevention,
and the cost of operating a WtE plant are linearized using SOS1 and SOS2 variables.
Because of the scarcity of available data, the uncertainty is handled by robust optimiza-
tion. However, the ellipsoidal uncertainty sets with varying immunization parameter
are considered, as they more aptly capture the relationship between the uncertain
parameters, without leaning toward the conservatism of the box-budgeted ones. The
resulting mixed-integer second order cone problem is implemented in Julia and a
case study, demonstrating the usefulness of the method on a real-world example, is
conducted (Sect. 3).
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2 Mathematical model

In this section, a robust mixed integer non-linear mathematical model for WM
decision-making support is developed. The notation (Sect. 2.1), constraints and objec-
tive function (Sect. 2.2), model linearization (Sect. 2.3), uncertain waste production
handling (Sect. 2.4) and uncertainty incorporation (Sect. 2.5) are subsequently pre-
sented.

2.1 Notation used

Sets:

I set of all nodes i that form the network, i ∈ I
J set of edges j which connect nodes by road, j ∈ J ⊆ I × I
L set of edges l which connect nodes by railway, l ∈ L ⊆ I × I .

Parameters:

ai, j incidence matrix for road transportation
bi,l incidence matrix for rail transportation
cLAND
i cost for landfilling in the node i

cWtE,PEN
i penalty cost for energy and heat generation loss in WtE plant
cROAD
j cost of transportation on road edge j

cRAI L
l cost of transportation on rail edge l

cRAI L,PEN
l penalization cost for railways
eLAND
i existing capacity of landfill in the node i
mRAI L

l lower bound for rail edge l when the edge is used
MRAI L

l upper bound for rail edge l
mROAD

j lower bound for road edge j when the edge is used

MROAD
j upper bound for road edge j

ΔWtE possibility for prohibition of energy recovery in WtE plant
ΔL AND possibility for prohibition of landfilling.

Decision variables:

eWtE
i designed capacity of WtE plant in the node i
r+
i amount of waste transported to node i by rail
r−
i amount of waste transported from node i by rail
t L AND
i amount of landfilled waste in the node i
t RECi amount of recycled waste in the node i
tWt E
i amount of processed waste in WtE plant in the node i
v+
i amount of waste transported to node i by road

v−
i amount of waste transported from node i by road

wi variable for the nominal waste production in the node i
wi variable representing the waste production in the node i
x j continuous variable representing the amount of flow on road edge j
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Fig. 2 Illustration of two dependencies: advertising-like and pricing functions

yl continuous variable representing the amount of flow on rail edge l
δl binary variable that indicates the activation of rail edge l
ωWtE
i amount of non-utilized capacity in the node i in WtE plant.

Besides the above mentioned parameters and decisions variables, the following
(non-linear) cost functions are considered.Note that twowell-knownmarketingmech-
anisms are presented—advertising and pricing (see Fig. 2a, b)—and further used in
the mathematical models.

cWtE
i (eWtE

i ) cost for processing in WtE plant (pricing)
cW AST E
i (wi ) cost for reduction of waste produced (advertising-like)
cRECi (t RECi ) cost for increasing of recycling (advertising-like).

2.2 Model description and formulation

The model developed in this section consists of (sets of) constraints (1)–(14) and one
objective function (15).

2.2.1 Constraints

The constraint (1) forms the overall balance in the particular node. The amount of
transportedwaste to thenode i (bothmeansof transport – road, rail) andwaste produced
has to be equal to the amount transported from the node i and the waste treated (energy
recovery, recycling, landfilling):

wi + v+
i + r+

i = tWt E
i + t RECi + t L AND

i + v−
i + r−

i ∀i ∈ I . (1)

Constraints (2) and (3) define the rail transportation flows according to the incidence
matrix bi,l and separate the amount of transported waste to (r+

i ) and from (r−
i ) the

node i respectively:
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∑

l∈L:bi,l>0

bi,l yl = r+
i ∀i ∈ I (2)

∑

l∈L:bi,l<0

−bi,l yl = r−
i ∀i ∈ I . (3)

Constraints (4) and (5) define the road transportation flows according to the inci-
dence matrix ai, j and separate the amount of transported waste to (v+

i ) and from (v−
i )

the node i respectively:

∑

j∈J :ai, j>0

ai, j x j = v+
i ∀i ∈ I (4)

∑

j∈J :ai, j<0

−ai, j x j = v−
i ∀i ∈ I . (5)

In (6) and (7), theminimum andmaximumflows are defined (when the edge is used)
for all edges according to local infrastructure conditions for rail and road transportation
respectively:

δlm
RAI L
l ≤ yl ≤ δl M

RAI L
l ∀l ∈ L (6)

mROAD
j ≤ x j ≤ MROAD

j ∀ j ∈ J . (7)

The Eq. (8) describes the utilization of designed capacities (eWtE
i ) for WtE plant in

each node i . Parameter ΔWtE enables potential strategic decision which is to forbid
the construction of WtE plants:

tWt E
i + ωWtE

i = eWtE
i ΔWtE ∀i ∈ I . (8)

The constraint (9) limits the amount of landfilled waste t L AND
i by eLAND

i in the
node i . Parameter ΔL AND enables the prohibition of landfilling:

t L AND
i ≤ eLAND

i ΔL AND ∀i ∈ I . (9)

2.2.2 Constraints: domains of variables

All flows has to be non-negative for road and rail:

yl ≥ 0 ∀l ∈ L (10)

x j ≥ 0 ∀ j ∈ J . (11)

Transportation balance (rail, road) for waste out/in-flow for nodes i :

v+
i , v−

i , r+
i , r−

i ≥ 0 ∀i ∈ I . (12)
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The amount of processed waste has to be non-negative for all waste treatment
options, production, nominal production and penalized mount of waste in WtE:

eWtE
i , tWt E

i , t RECi , t L AND
i , wi , wi , ω

WtE
i ≥ 0 ∀i ∈ I . (13)

One more constraint is considered:

δl ∈ {0, 1} ∀l ∈ L. (14)

2.2.3 Objective function

The objective function (15) minimizes multiple transportation, processing and adver-
tising costs:

min
∑

l∈L
ylc

RAI L
l +

∑

l∈L
δl c

RAI L,PEN
l +

∑

j∈J

x j c
ROAD
j

+
∑

i∈I
tWt E
i cWtE

i (eWtE
i ) +

∑

i∈I
ωWtE
i cWtE,PEN

i +
∑

i∈I
cW AST E
i (wi )

+
∑

i∈I
t RECi cRECi (t RECi ) +

∑

i∈I
t L AND
i cL AND

i . (15)

The first row represents a transportation costs and edge operation fee for rail and
road, respectively. The following summation defines the cost for processing in WtE
plant. The next component penalizes the amount of non-utilized capacity representing
the loss in heat and electricity generation. Costs of advertising to reduce the waste
produced and to increase recycling follow. The last component summarizes cost for
landfilled waste.

2.3 Linearization of themodel

Costs associated with waste processing differ due to the type of facility. The price is
fixed from a valid price list for operated landfills, but the price of WtE plant is depen-
dent on its capacity (so-called pricing). This is described by non-linear function, which
disrupt the model linearity and thus solvability. The same problem arises with recy-
cling, which can be given by a logistic function or with waste production reduction
(advertising). Properties of pricing and advertising functions (e.g., convexity) often
results in difficulties with finding a global extreme. In addition, the problem is con-
sidered as stochastic, which further complicates the situation. This huge non-linear
problem can be solved by heuristic methods, but the optimality is not ensured and the
computational time would also be enormous. This problem can be solved through the
linearization of the application with piece-wise continuous linear function.

The linearization mentioned uses the so-called SOS1 and SOS2 variables (see
Sect. 2.3.1). The SOS1 variables represent a set of mutually exclusive alternatives
which can be chosen—this is used for the selection of the capacity of the WtE plant.
The SOS2 variables are used for piece-wise linear approximation of the advertising
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functions (at most two adjacent in the ordering given to the set can be non-zero and
they must add up to 1, see Williams 2009).

2.3.1 Additional notation and constraints

The next step is to provide new constraints for substitution of non-linearities in the
model. The set K represents the set of points k for linearization (for each k ∈ K are
defined values on horizontal and vertical axis). The following variables and parameters
have to be defined.
SOS1 variables:

αWtE
i,k indicator of specific capacity of a WtE plant in node i.

SOS2 variables:

αREC
i,k specific investment indicator for recycling

αW AST E
i,k specific investment indicator for prevention of waste production.

Additional real variables:

t̂W t E
i,k the amount of waste treated at i with capacity option k

ω̂WtE
i,k the amount of unused capacity at i with capacity option k.

Parameters:

cRECi,k cost for recycled waste amount of linearization point k in node i

cW AST E
i,k cost for waste reduction of linearization point k in node i

cWtE
i,k cost for capacity of linearization point k in node i for WtE plant

f RECi,k advertising investment k for recycling in node i

f W AST E
i,k advertising investment k for waste reduction in node i

f Wt E
i,k capacities for each linearization point k for WtE plant in node i .

The constraint (16) acts in the same way as (8), linking the WtE treatment and
unused capacity with the SOS1 variable αWtE

i,k (this ensures that in each node i the

variables t̂W t E
i,k , ω̂WtE

i,k can have nonzero values for only one option k). The constraints
(17), (18) and (19) link the WtE treatment, unused capacity and designed capacity in
a node i with the particular options (note that in these sums only one value can be
nonzero). The Eqs. (20) and (21) are the SOS2 constraints for advertising in recycling
and investments in waste reduction. The last constraint (22) enforces non-negativity
of the additional variables.

t̂W t E
i,k + ω̂WtE

i,k = αWtE
i,k f Wt E

i,k ΔWtE ∀i ∈ I , k ∈ K (16)

tWt E
i =

∑

k∈K
t̂WtE
i,k ∀i ∈ I (17)

ωWtE
i =

∑

k∈K
ω̂WtE
i,k ∀i ∈ I (18)

eWtE
i =

∑

k∈K
αWtE
i,k f Wt E

i,k ∀i ∈ I (19)
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t RECi =
∑

k∈K
αREC
i,k f RECi,k ∀i ∈ I (20)

wi =
∑

k∈K
αW AST E
i,k f W AST E

i,k ∀i ∈ I (21)

t̂W t E
i,k , ω̂WtE

i,k ≥ 0 ∀i ∈ I , k ∈ K . (22)

2.3.2 Modified objective function

Themodified objective function (23) reflects the newly defined linearization for pricing
and advertising:

min
∑

l∈L
ylc

RAI L
l +

∑

l∈L
δl c

RAI L,PEN
l +

∑

j∈J

x j c
ROAD
j +

∑

i∈I

∑

k∈K
t̂WtE
i,k cWtE

i,k

+
∑

i∈I
ωWtE
i cWtE,PEN

i +
∑

i∈I

∑

k∈K
αW AST E
i,k cW AST E

i,k

+
∑

i∈I

∑

k∈K
αREC
i,k cRECi,k +

∑

i∈I
t L AND
i cL AND

i . (23)

2.4 Handling the uncertainty: robust formulation and uncertainty sets

The only uncertainty in the data that is considered lies in the effect of wi (the waste
production variable) on the real production. In other words, it is expected that the result
of advertising for waste-reduction will be subjected to perturbations ζi (described fur-
ther). The question is how to come upwith a sensible representation of this uncertainty.

It is considered that historical data of waste production for all of the cities are
available. For the purpose of this paper, the authors only have early data for the last
8 years, which is too few to come up with a useful time series/distribution estimation
and construct a stochastic programming formulation (as in Gambella et al. 2018).
Instead, the methodology of robust optimization (Ben-Tal et al. 2009) is used and the
so-called uncertainty sets are constructed, where the perturbations are expected. These
uncertainty sets can be though of as the support of perturbation distribution, i.e., the
smallest closed set so that the probability for the data to take a value outside of this
set is zero. The resulting robust formulation will “immunize” the solution against the
worst possible situation that may result from the selected uncertainty set.

To come up with the uncertainty set, each pair of cities is examined first, look at
the yearly fluctuations in production (see Fig. 3a) and construct a minimal volume
ellipsoid centered at zero, covering the fluctuations (see Fig. 3b). The construction of
the minimal volume ellipsoid (called the Löwner-John ellipsoid) covering finite set of
points is done by solving the following problem (see Boyd and Vandenberghe 2004).
Let a zero centered ellipsoid E be characterized as the inverse image of the Euclidean
unit ball under an affine mapping:

E = {ζ | ||Uζ ||2 ≤ 1} = {ζ | ζ TUTUζ − 1 ≤ 0}.
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Fig. 3 Construction of the pair-wise perturbation sets for the cities Vyškov and Šlapanice

It can be assumed w.l.o.g. thatU is a symmetric positive definite matrix (U ∈ Sn,U �
0), in which case the volume of E is proportional to detU−1. Having a finite set of
points ζ1, . . . , ζm ∈ Rn the problem can be written as follows:

min
U

log detU−1

s.t. ||Uζι||2 ≤ 1, ι = 1, . . . ,m,

U ∈ Sn, U � 0,

which is a convex (tractable) semidefinite program, that is solved using the SDPT3
solver within the CVX modeling system (see Grant and Boyd 2008) in the MATLAB
programming language.

After computing these (N = 561) covering ellipsoids (each having 2 dimensions),
an additional ellipsoid (denoted as C = {ζ | ||Cζ ||2 ≤ 1}) covering the union of the
pair-wise ones (in the n = 34 dimensions) is constructed. This step involves solving
another convex semidefinite program of the following form:

min
C,τ1,...,τN

log detC−1

s.t. τ1 ≥ 0, . . . , τN ≥ 0,
[
C2 − τιU 2

ι 0
0 −1 + τι

]
� 0, ι = 1, . . . , N ,

C ∈ Sn, C � 0,

which was solved, again, by using the SDPT3 solver within CVX. Note that τ ’s are
auxiliary variables (Boyd andVandenberghe 2004). This covering ellipsoid C ismainly
used in the evaluation of the obtained solutions. The projection of C to a “pair-wise”
plane can be seen in Fig. 4.
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Fig. 4 Projection of the covering ellipsoid C (black)

2.5 Incorporating the uncertainty

Let us identify the pair-wise ellipsoidal uncertainty derived earlier by the correspond-
ing matrix U – that is the ellipsoid Ui,î will be used to denote the uncertainty set for

cities i and î ∈ I . There are several options to incorporate these ellipsoidal uncertainty
sets into the model. The first would be to use the following formulation:

⎡

⎢⎢⎣1 + max
î∈I ,î 	=i

‖ξi,î‖2≤Ω

proji (U
−1
i,î

ξi,î )

⎤

⎥⎥⎦ wi ≤ wi , ∀i ∈ I ,

where proji is the projection to the i-th coordinate and Ω determines the diameter of
the uncertainty set—settingΩ = 1 results exactly in the ellipsoids derived previously,
whereas smaller or larger values will shrink/enlarge the ellipsoids, but will not change
their shape. SettingΩ = 0 results in a “baseline” formulation, where no uncertainty is
considered (the effect ofΩ on the solutionwill be observed in Sect. 3). The formulation
above can be summarized by words as: “among all the ellipsoid that include city i find
the highest value in the corresponding coordinate”. The issue with this formulation is
that it disregards the pair-wise structure of the uncertainty sets and results in an overly
conservative solution.

Instead, the uncertainty sets will be incorporated by using the sums of pairs of wi ,
for which the structure is well-suited. The constraint has the form:

max
ζi ,ζî‖Ui,î [ζi ;ζî ]‖2≤Ω

[(1 + ζi )wi + (1 + ζî )wî ] ≤ wi + wî , ∀i ∈ I ,∀î ∈ I , i 	= î,
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which can be reformulated (see Ben-Tal et al. 2009) as:

wi + wî + Ω‖U−1
i,î

[wi ;wî ]‖2 ≤ wi + wî , ∀i ∈ I , ∀î ∈ I , i 	= î, (24)

which is a convex (tractable) second order cone constraint. To prohibit the solution
from ending in extremely small or extremely large values for wi (which will happen
if,e.g., in a city the treatment costs are much smaller than in other ones), value of wi

will be restricted by the maximum possible perturbation:

⎡

⎢⎢⎣1 + max
î∈I ,î 	=i

‖ξi,î‖2≤Ω

proji (U
−1
i,î

ξi,î )

⎤

⎥⎥⎦wi ≥ wi , ∀i ∈ I . (25)

3 Computations and results

The problem (1)–(14), (16)–(25) is a two-stage mixed-integer second-order cone pro-
gramming problem. The first-stage (planning) variables include the decisions on
nominal waste production wi , recycling t RECi and designed capacity of the WtE
plants eWtE

i . The rest of the variables (transportation and treatment) are considered
second-stage (operational). Although this has no impact on solving the formulation,
it influences how the solution will be evaluated. The solution will be evaluated on a
test set of scenarios with different production perturbations. In the evaluation, only
the first-stage variables are considered fixed by the solution and the second-stage
variables are recomputed to minimize the costs (23), satisfying all the constraints.
Furthermore, the solutions of (1)–(14), (16)–(25) for different values of the “immu-
nization” parameter Ω are compared. To solve this problem, the JuMP modeling
language (see, Dunning et al. 2017) was used within Julia for modeling and the
state-of-the-art solver GUROBI (Gurobi Optimization 2016). The computations were
performed on an ordinary machine (3.2 GHz i5-4460 CPU, 16 GB RAM).

3.1 Computational experiments on randomly generated networks

To give an insight into the computational tractability of the presented model, several
instances of test networks were generated. The test networks were designed to roughly
mimic the structure of the case study in all of the considered parameters. The instances
contained 10, 20, 50, 100 and 200 cities, uniformly distributed on a square area, whose
size was dependent on the number of cities. For example, the networks with 200 cities
are on a square with a side length of 300km—this setting approximates the geography
of the Czech Republic, with 205 municipalities on the area of 78,865km2. In each
city, the waste production was between 250 and 380kg per person, the recycling rate
between13%and30%.The road networkwas constructed by connecting each citywith
its 5 nearest neighbors. The railroad network connected all cities that were between
60 and 200km apart. For each city, 6 different WtE capacities/treatment costs were
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Table 1 Results of the computational experiments, average values over 50 runs

Number of cities Number of
variables

Number of binary
variables

Time (s) to reach
1% optimality gap

Number of train
connections

10 577 218 0.1 1.4

20 1282 501 0.4 5.8

50 4445 1872 8.4 8.8

100 12,225 5413 14.9 14.8

200 34,190 15,695 45.5∗ 19.4

∗Only the instances that did not exceed the time limit

Fig. 5 Boxplot of the computation time to reach 1% optimality gap

considered. The investments into recycling and prevention were linearized by 6 and
11 SOS2 variables, respectively (with different values for each city, since the cities
have varying “baseline” level of production and recycling).

Each instance was generated and solved 50 times (with a random value of the
parameter Ω between 0 and 1), with optimality gap set to 1% and a time limit of
100s. The results are summarized in Table 1 and Fig. 5. The computational times are
(maybe a bit unexpectedly) rather low. It is probably a combination of the incredible
enhancements of the MIP solvers and hardware that took place in the last two decades
(see, e.g., Bixby 2012 or Bertsimas 2014) and a favorable structure of the optimiza-
tion problem (as the SOS1 and SOS2 variables constitute a large part of the binary
variables). For the problems with 200 cities, out of the 50 instances, 25 exceeded the
time limit—the average optimality gap after the 100s was 2.83%.

3.2 Case study

The problem instance of the case study investigated in this paper concerns two contigu-
ous regions in the Czech Republic—the South Moravian Region and the Zlín Region,
whose outline can be seen in Fig. 6.

The problem has 4374 variables (of which 1818 are binary) and 3449 constraints
(of which 561 are second-order cone). The number of variables is higher com-
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Fig. 6 Amap illustrating the solution for Ω = 1. The numbers correspond to the installed capacities, black
arrows indicate the use of the railroad and grey arrows the use of roads

pared to the randomly generated networks, because all possible railroad connections
were considered. The optimality gap parameter was set to 0.01%, the computa-
tions took less than 3 s. This problem was recomputed for 6 different values of
Ω = [0, 0.2, 0.4, 0.6, 0.8, 1] (where the “baseline” case of Ω = 0 does not con-
tain any of the second-order cone constraints). One of the solutions (for Ω = 1) is
illustrated in Fig. 6.

To evaluate the different solutions, 68 different scenarios of production pertur-
bations were chosen. These scenarios correspond to the endpoints of the covering
ellipsoid C in the direction of its principal axes (the eigenvectors of the corresponding
matrix C). For these, the corresponding optimal second-stage (operational) variables
were computed.

The results are best summarized in Fig. 7. For all of the considered scenarios, the
problem was feasible, indicating that the infrastructure (transportation network and
waste treatment options) are robust enough (at least for the test cases). For higher
values of Ω , the worst-case costs over the test scenarios clearly outperforms the ones
for lower values of Ω . However, the price for robustness of the solution is in its
increased average costs (see Fig. 7a)—the more “immunized” solutions tend to build
more capacity for the WtE plans, which, in some scenarios, remains unused. The
solutions with higher values of Ω also tend to landfill much lower amounts of waste
(see Fig. 7b). In the end, it will be up to the actual decision-maker to choose the right
balance between robustness against “unfortunate” fluctuations and possibly higher
expected costs.

4 Conclusions and further research

The presented approach introduces several new modeling ideas in the area of WM
and by the introduced model building and solving suggests new changes in the key
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Fig. 7 The resulting costs and amount of landfilled waste. Evaluation for different values of Ω

waste treatment infrastructure for the selected real-world case. The modeling follows
the waste treatment hierarchy and locates the facility and its capacity. These relies on
the pricing and advertising methods, which were included in the objective function.
Relationswere subsequently simplified using linearizations due to complexity reasons.
The approach considers two differentmeans of transport (road, rail) while both have its
specific properties which influence the waste flow. The uncertainty was incorporated
in the unknown future waste production through the ellipsoid based perturbations. The
results are applicable to the area of waste treatment infrastructure planning and may
serve as the support for the decision-makers to be robust enough and economically
viable at the same time.The computational experiments suggest that themodel is viable
and tractable even for real-world problem instances. The original obtained solution
may also be useful for analyzes dealing with all types of waste.

More specifically, the obtained results can be seen and analyzed from the perspec-
tive of local authorities: apparently, a cooperation between particular regions seems
justified. The results indicate that considering a low number of large-capacity WtE
facilities with high heat demand is convenient; these can be accompanied with low-
capacity WtE facilities that do not carry high risks of negative developments of waste
availability. In large and complex problems, it is suitable to consider a combination
of high capacity facilities accompanied by smaller regional projects. In the case of
inter-regional transport, it is convenient to consider railway transport, which is envi-
ronmentally friendly that helps with project acceptance by the population. Sensitivity
analysis indicates that landfilling of a small amount of waste is a reasonable supple-
ment from the economical point of view. Moreover, landfills bring a positive value
regarding residues from the WtE facilities and so the overall eliminating of landfilling
seems pointless. Last but not least, complex planning should not lead to planning of
over-capacities that also cause high expenses of producers.

With respect to research limitations and our further research plans, it is important to
emphasize that general modeling ideas that were specifically applied to the introduced
real-world motivated problem can be modified and detailed for subsequent facility
location and design problems in the area of sustainable development decision support,
e.g. involving multistage decision making, see Gambella et al. (2018). Furthermore,
the authors identifiedmulti-objective approaches combining, e.g., costs, environmental
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impact, residents mood, etc. as one of the potentially further research directions that
the recent papers commonly propose (e.g., Eiselt and Marianov 2014). Alternatively,
as the waste production, priorities and strategies change, a dynamic location problem
with an opening, closure and reopening of treatment facilities is possible (Dias et al.
2008). In case of better information on the data and on the correlation between the
waste production in different cities, it would be possible to use a (possibly more
efficient) stochastic programming approach (e.g., Gambella et al. 2018).
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