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Abstract  

Many state-of-the-art optimization algorithms stand against the threat of premature convergence. 

While some metaheuristics try to avoid it by increasing the diversity in various ways, the Bison 

Algorithm faces this problem by guaranteeing stable exploitation - exploration ratio throughout the 

whole optimization process. Still, it is important to ensure, that the newly discovered solutions can 

affect the overall optimization process. In this paper, we propose a new Run Support Strategy for the 

Bison Algorithm, that should enhance the utilization of newly discovered solutions, and should be 

suitable for both continuous and discrete optimization. 
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1 Introduction 

Sources of inspiration for artificial intelligence applications seem to be limitless. The optimization field 

employs the bases of evolution [1], chromosomes [2], or even the collective intelligence phenomenon, 

which created the swarm algorithms [3]. The swarm algorithms are powerful tools for solving both 

continuous and discrete minimization problems by simulating animal behavior. Though many animal 

species are social creatures, they do not necessarily need to have a leader to make ultimate decisions, 

and yet they manage to complete nontrivial optimization tasks, like foraging, hunting, mating, or 

protecting themselves against predators. Simulating such behavior patterns created a variation of 

successful optimization techniques like the Particle Swarm Optimization [4], Grey Wolf Optimizer [5], 

SOMA [6], or Cuckoo Search [7], which were already used to solve some challenging real-life 

applications [8, 9]. 

However, many swarm algorithms lean towards premature convergence due to excessive exploitation 

at the expense of exploration [10]. The so-called abnormal exploitation techniques tackle this problem 

by raising the population diversity [10-12]. One of the latest swarm algorithms, the Bison Algorithm, 

addresses the same problem differently - by guaranteed exploitation-exploration ratio through the 

whole optimization process. The Bison Algorithm is a multi-agent system, which divides its population 

into two groups: the swarming group, and the running group. While the first is exploiting the solutions, 

the second is exploring the search space. 

Since the very first proposal of the Bison Algorithm, the mechanics of the running group evolved 

rapidly. In [13, 14] the groups were divided solely by the quality of the found solution. Therefore the 

weaker solutions explored the search space, while the stronger ones managed the exploitation. 

However, this approach caused a gradual scattering of the running group, as both groups switched 

their members after each iteration according to their objective function values. Responding to this, 

[15] proposed a new group arrangement in which the successful exploration solutions were no longer 

switched, but only copied to the swarming group. The worse swarming solutions were abandoned, and 



the running group was left intact for further exploration. This redefined the basic Bison Algorithm, as 

it provided a more logical model. 

To enhance the exploration factor even more, [16] proposed a “run and seek” variation of the Bison 

Algorithm, in which the running group temporarily exploited the area of a promising solution on their 

own and then returned to the exploring behavior. This approach significantly improved the 

optimization of several functions, yet it was unable to affect the convergence when the swarming 

group was already stuck in a local optimum quite close to the global one. Also, adding the possibility 

of switching the exploration and exploitation methods, revoked the guarantee of stable exploration-

exploitation ratio. 

In this paper, we propose a new Run Support Strategy without changing the exploration behavior of 

the running group, by redefining the center computation of the swarming movement only. This 

strategy should provide a robust way of promoting the newly discovered solutions, and should be 

usable even for large-scale problems, discrete, and real-time optimization. 

The paper is structured as follows: Sect. 2 introduces the basic Bison Algorithm, Sect. 3 proposes the 

new Run Support Strategy and provides an example of the bison movement in 2-dimensional space. 

Section 4 designs the validation experiments of the new strategy and presents the results. Section 5 

discusses the achieved results, and the impact on the future research is evaluated in Sect. 6. 

 

2 Bison Algorith 

The Bison Algorithm is inspired by the exploitation and exploration patterns of bison herds. The former 

simulates the endangered herd behavior: when attacked, bison create a circle of the strongest 

individuals to protect the weak. The latter replicates the persistent running behavior [17]. The 

algorithm divides the population into two groups, each simulating different behavior as outlined in 

Algorithm 1. 

Since many swarm algorithms are based on similar principles [18], we would like to highlight the 

difference between the Bison Algorithm and other optimization techniques. The main characteristics 

of the Bison Algorithm is the separation of the exploration and exploitation. There is a unique group 

of explorers running through the search space with the sole purpose of avoiding the perils of local 

optima. This exploration mechanism is the main difference between the Bison Algorithm and other 

swarm algorithm like the PSO, GWO or SOMA (which explores the search space as an integral part of 

the exploitation movement in a very different manner). The exploitation movement is based on the 

center of several fittest solutions, while other algorithms usually use only one best solution to move 

to. The algorithm was compared to other metaheuristics on IEEE CEC 2017 benchmark functions in [14-

16]. 

 

 

 

 

 



Algorithm 1: Pseudo code of the basic Bison Algorithm 

 

 

Swarming Behavior. The swarming behavior computes the center of the strongest solutions (Eqs. 1, 2) 

and then moves all the solutions from the swarming group closer to the center if it improves their 

quality (Eq. 3). 

 

 

 

 

 

  

 

Where: 

- s is the elite group size parameter, 

- xi and xi+J represent the current solution and the new solution candidate, 

- rand(from, to) is a random number in the range of the two given arguments, 

- overstep defines the maximum length of the swarming movement, 

- D represents the dimensionality of the problem. 



Running Behavior. Meanwhile, the running group explores the search space by shifting the whole 

group in the run direction vector (Eq. 6), randomly generated during the initialization (Eq. 4) and 

slightly altered in each iteration (Eq. 5). When bison outreach the search space boundaries, they 

appear on the other side of the dimension. 

 

 

 

  

 

 

  

 

Where: 

- rand(from, to) is a random number in the range of the two given arguments, 

- ub and lb are the upper and the lower boundaries of the search space, 

- D represents the dimensionality of the problem, 

- xi+1 and xi represent the current solution and its previous state. 

Table 1 describes the parameters of the algorithm and their recommended values [18]. 

 

Table 1. Parameters of the Bison Algorithm and their recommended values 

 

3 Run Support Strategy 

To enhance the impact of the running group, we propose a new strategy for the center 

computation, applied for successful running solutions. When a runner finds a better solution than 

a swarmer, the discovered solution should replace the center of the swarming movement for a 

certain number of iterations, specified by a new parameter called the run support and the overstep 

parameter is temporarily changed (Algorithm 2). This enables the swarming group to exploit the 

area around of the discovered solution. When the iteration limit is met, the center of the swarming 

movement is computed from the fittest solutions within the swarming group (Eqs. 1, 2). 



Algorithm 2: Center computation of the Run Support Strategy 

 

Where: 

- xrunner and xswarmer are the running and swarming solutions, 

- f(x) is the objective function value, 

- run support is the number of iterations for the planned exploitation of the promising 

solution, 

- rand(from, to) is a random number in the range of the two given arguments, 

- center is the center of the swarming movement, 

- overstep is the overstep parameter. 

 

3.1 Run Support Strategy Movement Example 

Figure 1 shows the application of the Run Support Strategy on population distribution showing the 

movement on 2-dimensional Schwefel’s function. In the first picture, the center is computed from 

the fittest solutions within the swarming group (elites). 

 

 

Fig. 1. Movement of the Bison Algorithm with the Run Support Strategy on 2-dimensional Schwefel’s function 

 



When the running group reaches the optimum location area (iteration 17), the center is shifted 

towards the newly discovered solution. When the run support limit is reached, the center is computed 

again from the best swarming solutions (iteration 20), and ultimately improves the final solution 

(iteration 25). 

 

4 Methods and Results 

As we were particularly interested in the cases, where the running group found a promising solution 

and employed the Run Support Strategy, we carried out a success simulation experiment. During this 

experiment, we placed one member of the running group exactly one run direction vector over the 

global optimum location (Eq. 7) and generated the rest of the running group around in the original 

formation. From there the running group explored the search space in the run direction vector, as 

expected. 

 

 

Where: 

- xrunner represents one solution of the running group, 

- xopt is the known optimum location, 

- run direction is the run direction vector. 

All of the experiments were held on 30 independent runs, each consisting of 10000 • dimension 

evaluations of the objective function solving 10, 30 and 50dimensional problems with well-known 

locations of global optima (Eqs. 8-11). The parameter configuration used for the experiments are 

described in Table 2. 

Due to the exploration emphasis, the Bison Algorithm was originally intended to solve functions 

with a particularly narrow decreasing neighborhood around the global optimum. This description 

notably fits the Easom’s function, as can be seen in Fig. 2. 

 

Table 2. Parameter configurations applied for the experimen 

 

 

 



Rastrigin’s Function 

 

 

 

Function minimum for En (x1; x2...xn) = (0, 0,...,0). Value for En y =0. 

 

The 2nd De Jong s Function (Rosenbrock’s Valley) 

 

 

 

 

Function minimum for En: (x1, x2...xn) = (1, 1,...,1). Value for En: y =0. Schwefel’s Function 

 

 

 

 

Function minimum for En: (x1, x2...xn) = (420.96,., 420.96). Value for En: y = 0. Easom’s Function 

 

 

 

Function minimum for En: (x1, x2…xn) = (π, π,…, π). Value for En: y = –dim + 1. 

 

Fig. 2. Easom’s function in 2 dimensions 



To decide the ideal value of the run support parameter, we compared five values of the parameters 

on all the functions with the Friedman Rank Test (p < 0.05). It is worth mentioning that this experiment 

considered even the basic Bison Algorithm (with run support = 0). The results are shown in Table 3. 

The results of the success simulation experiments are presented as follows: Table 4 compares the Run 

Support Strategy and the basic Bison Algorithm with the Wilcoxon rank-sum test (α = 0.05). Table 5 

shows the statistics of the algorithms. The optimum find rate represents the percentage of all the runs, 

where the algorithm was able to find a solution with the error f (x) — f(xgiobaioptimum) \<E — 8. 

Figure 3 shows a selection of mean convergences of both the success simulation experiments and the 

standard runs of the algorithms. 

 

Table 3. The Run Support parameter values on functions with simulated success ranked by the Friedman Rank Test (p < 0.05). 

The best ranks are bold. 

 

Table 4. Winning algorithms on functions with simulated success (Wilcoxon a = 0.05) 

 

Table 5. Performance of the Run Support Strategy and the basic Bison Algorithm on functions with simulated success (mean 

error, standard deviation, and optimum find rate) 



Fig. 3. Mean convergences of the basic Bison Algorithm and the Run Support Strategy both in the success simulation 

experiment and the standard run (with no bias of the running group) 

 

5 Discussion 

The success simulation experiment uncovered the supremacy of the Run Support Strategy over the 

basic version in all of the tested dimensions of Schwefel’s function and high dimensional Easom’s 

function (Wilcoxon α = 0.05). At the 50-dimensional Easom’s function, the new strategy was ultimately 

able to find the global optimum in 80% of all the runs. The Run Support Strategy also converged better 

than the basic algorithm even when comparing the standard run and success simulation alone. 

The Friedman Rank Test (p = 0.05) experiment compared the run support parameter values. Even 

though that none of the configurations significantly outperformed the other ones, the best results 

were usually achieved when the run support parameter was set to 3 iterations. In contrast, when the 

run support was set to 0 (therefore when the basic algorithm was applied), the results were steadily 

ranked the worst. However, the results also suggest, the trend might change for higher dimensions. 

 

6 Conclusion 

We proposed a new Run Support Strategy for the Bison Algorithm and proved, that it is beneficial for 

the optimization process when compared to the basic version of the algorithm. The strategy was 

especially successful when solving the Easom’s function, a prototype of a function with the global 

optimum hidden in a very narrow decreasing neighborhood. These results manifest the asset of the 

boosted exploration. Accordingly, we highly recommend the employment of the Run Support Strategy. 



Furthermore, thanks to the robust design of the Run Support Strategy, the outcomes of this research 

will certainly be used in future research. We would like to exploit the uncovered benefits in a discrete 

version of the Bison Algorithm, large-scale, and realtime optimization. 
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