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Abstract. The focus of this contribution is on the use of two controller tuning techniques for delayed 
controllers designed by an algebraic approach for linear time-invariant time delay systems. The well-known 
Chien-Hrones-Reswick (CHR) method and the Equalization Method (EM) are used. The tuning procedure is 
applied to compensation-type controllers that include internal delays, and hence there can be found a link to 
the habitual Smith predictor structure. This study considers two typical representatives of controlled plants 
with both input-output and internal delays; namely, the first- and second-order (of derivatives) systems are 
taken. Numerical comparative experiments are presented and discussed. 

1 Introduction  
It is common knowledge that majority of the controllers 
in the industry are linear covered by Proportional-
Integral (PI) or Proportional-Integral-Derivative (PID) 
ones. This is mainly because of their simplicity and 
robustness [1].   

Due to the appearance and inclusion of delay effect 
in various technical as well as economic, social, 
biological, etc. systems, the family of time-delay systems 
(TDSs) have paid attention since the genesis of modern 
systems and control theory [2, 3].  

A combination of PID control and TDSs plant, 
nevertheless, does not work well without extra effort of 
engineers when controller tuning since delay negatively 
influences dynamic properties of the feedback control 
system [4, 5]. It is, for instance, possible to use a rational 
approximation of a TDS plant to get a finite-dimensional 
model [6, 7], or optimization techniques (e.g., those 
minimizing integral criteria [8]). Time delay 
compensation techniques constitute another family of 
approaches to control TDSs. In 1957, Smith [9] 
investigated and published his famous deadtime 
compensation scheme, see Figure 1, in which ( )0G s  and 

( )0G sɶ  stand for the delay-free part of the plant G  and 

its model, respectively, and ( )SC s  expresses the 
particular controller. Last but not least, let us mention 
the finite spectrum assignment controller principle [10] 
that enables to prescribe and set an arbitrary finite 
number of feedback poles by using a convolution (i.e., a 
delay distribution) over state and/or input variables. Note 
that this feature cannot be satisfied via the use of PID or 
the Smith predictor. 

Fig. 1. Smith predictor. 

By adopting a fractional system representation over a 
ring (without delay approximation), followed by an 
algebraic controller design with the solution of the linear 
Diophantine equation and subsequent Youla-Kučera 
controller parameterization [11, 12], an anisochronic 
(delayed) control law is obtained that can easily be 
compared to the Smith predictor for stable controlled 
plants [13]. In the delay-compensation controller 
structure, undefined parameters are to be suitably tuned. 

The goal of this contribution is to provide the reader 
with a possible technique how to simply adopt some well-
established tuning principles to the eventual controller 
structure, after some trivial asymptotic delay 
approximation. Its novelty lies in the combination of 
traditional rules and unconventional controllers; 
moreover, there is a lack of tuning ideas for such a class of 
controllers in the literature. Thus, the paper follows up on 
the above cited controller structure design published by 
the first author in the sense of a suitable setting of free 
controller parameter(s). 
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We herein present two study cases; namely, the first-
order (of inertia) and the second order stable plants are 
considered. The simplified controller structures are of PI 
and PID types, respectively, on which the Equalization 
Method (EM) [14] and the Chien-Hrones-Reswick (CHR) 
tuning method [15] are applied, and results obtained by 
means of the Matlab/Simulink are compared via several 
performance measures. 

The rest of the paper is organized as follows: The 
overview of used tuning techniques is given to the reader 
in section 2. Section 3 includes the derivation of 
particular tuning laws for two selected delayed plant 
models followed by numerical examples with 
simulations and qualitative evaluations. The paper is 
concluded in section 4. 

2 Tuning methods 
Since the controller structure design is not the primary 
aim of this study, we further do not deal with a 
presentation of the algebraic control design technique 
used to get non-quantified control laws, and hence, it is 
omitted. The reader is referred e.g. to [12, 13, 16] for 
more detail. 

Let us follow with particular PI and PID tuning rules 
herein used. Both the rules utilize the first order 
controlled plant model with input-output delay governed 
by the transfer function 

( ) ( )exp
1

PK s
G s

Ts

τ−
=

+
ɶ

 (1) 

where PK  is the static gain, T stands for the time 
constant, and τɶ  means the modelled delay. The PID 
controller has the standard form as follows 

( ) 11
1

D
C

I F

T
C s K

T s T s

 
= + + + 

 (2) 

where , ,C I DK T T  represent controller gain, integral and 
derivative time constants, respectively, and F DT T≫
means the filter time constant. 

2.1 EM controller tuning rules 
For the PI rule (i.e., 0DT =  in (7)), the EM rules read 
[14] 

( ) ( )2 21 1 1 1
,

2 2C I ar
P

K T T
K

θ θ+ − + −
= =  (3) 

where arT T τ= + ɶ  is the average residence time, and 
/ arTθ τ= ɶ . 

The PID rule is expressed by the settings (4) where 
particular variables and symbols are further defined in 
(5). 
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2.2 CHR controller tuning rules 
The PI tuning rules for the CHR method read 

0.35 , 1.2C I
P

T
K T T

K τ
= =

ɶ
 (6) 

and the PID rules are also expressed in simple forms as 

0.6 , , 0.5C I D
P

T
K T T T

K
τ

τ
= = = ɶ

ɶ
 (7) 

3 Case studies 

3.1 First order plant 

Let the controlled plant be governed by the transfer 
function 

( ) ( )
( )

exp
exp

b s
G s

s a s

τ
ϑ

−
=

+ −
 (8) 

where 0τ ≥ , and 0 / 2aϑ π< <  agrees with the 
stability condition. 

The algebraic-based design for the simple negative 
feedback loop results in 

( ) ( )
( )( )

exp
1 exp

s a s
C s

b s s

ϑλ
λ τ
+ −

=
+ − −

 (9) 

where 0λ >  represents a tuning parameter. By the 
comparison to the Smith predictor (see Figure 1), it is 
obtained that 

( ) ( )exp
S

s a s
C s

b s

ϑλ + −
=  (10) 

In order to use tuning rules (3) and (6), let (9) be 
subject to the trivial approximation 0ϑ τ= → , which 
yields 
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( ) s a
C s

b s

λ +=
⌢

 (11) 

The controlled plant time constant T can be taken in 
the sense of the first order system as 1

0T s
−=  where 0s

is the dominant pole. 
The equivalence of (3) and (11) for CK  gives 

( )21 1
2

a
θ

λ
 + −
 =
 
 

 (12) 

while 1
IT a−=  is fixed due to (11). 

 In the contrary, the use of (6) results in 

0.35aTλ
τ

=  (13) 

3.1.1 Illustrative example 

Let the controlled plant be given by (8) with 0.2a = , 
0.6b = , 4τ = , 0.8ϑ = . It can be found that 4.117T = . 

From (12) and (13) one gets 0.1257λ =  and 
27.205 10λ −= ⋅ , respectively. Particular control 

responses are displayed in Figure 2, where 
( ) ( ), 75r t d tη η= = −  ( ( )tη  means the Heaviside 

function, r is the reference value and d stands for the 
disturbance that acts on the control action). It is worth 
noting that 1 5IT a−= =  while (3) and (6) give, 
respectively, 4.9409IT =  and 5.1026IT =  - this proves 
that both the approaches are very close to the implicit 
result given by the algebraic approach. 

Control performance (quality) measures that can 
judge control responses in a quantified way are given to 

the reader in Table 1. In the table, ( )
0

IAE : de t t
∞

= ∫ , 95T

expresses the duration until the output remains in the zone 
5%±  around the reference, e∆  stands for the maximum 

relative overshoot while ( )r t r=  is a constant and 

( ) 0d t = . 

y(
t)

Fig. 2. Control responses comparison – the first order case. 

Table 1. Control responses quality – the first order case. 

λ e∆ 95T IAE
0.1257 0 27.8 12 

27.205 10−⋅ 0 45.6 17.9 

It can be clearly deduct that the EM gives better 
results (in terms of the selected performance measures). 
Note, however, that neither the disturbance nor the 
control action is taken into account here. 

3.2 Second order plant 

Assume the plant (model) transfer function as 

( ) ( )
( )( )( )1 2

exp
exp
b s

G s
s a s s a

τ
ϑ
−

=
+ − +

 (14) 

with 1 20,0 / 2, 0a aτ ϑ π≥ < < > .  
The coprime factorization, as a part of the algebraic 

control design procedure, admits several options, which 
yields different eventual control laws. Consider two of 
them as follows: 

( ) ( )( )( )
( )( )

1 2
2

exp
1 exp

s a s s a
C s

b s s s

ϑη
γ η τ

+ − +
=

+ + − −
 (15) 

where 

2 , 2η λ γ λ= =  (16) 

or 

1 2 1 2,η λ λ γ λ λ= = +  (17) 

for some 1 2, , 0λ λ λ > . Under the simplification 
0ϑ τ= → , one gets 

( ) ( )( )
( )
1 2s a s a

C s
b s s

η
γ

+ +
=

+
⌢

 (18) 

Nevertheless, whenever (4) and (5), or (7) are applied 
to (18), it is not possible to solve this task analytically; 
hence, a numerical computation ought to be used. Notice 
that there are one or two free parameters to be obtained 
by the solution of three equations. Note, moreover,  that 
the plant time constant and delay can be estimated e.g. 
by using the following rules 

1 1
0 1,T s sτ τ− −= = +ɶ  (19) 

see [17], where 1s  stands for the dominant pole of the 
spectrum excluding 0s . 
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3.2.1 Illustrative example 

Consider the controlled plant (14) with the following 
parameters: 1 0.2a = , 2 0.5a = , 0.6b = , 4τ = , 

0.8ϑ = . 
As first, assume the EM and option (16). By applying 

(5), (6), such that conditions for , ,C I DK T T  are satisfied, 
one gets, respectively 

0.2526λ = , 7.3324λ = , 0.0882λ =  (20) 

Now, consider the second option (17). Then, by 
matching this formula with pairs { } { }, , ,C I C DK T K T

from (5), (6), it is, respectively, obtained  

1 2

1,2

0.092, 14.57,
0.088 0.276j

λ λ
λ

= =
= ±

 (21) 

The remaining pair { },I DT T  cannot be used doe to 
algebraic (solvability) issues. 

Regarding the CHR method, the following result is 
obtained by matching (7) and (16) for the same set of 
controller variables as introduced above (20): 

4.3061λ = , 0.1734λ = , 0.0851λ =  (22) 

Finally, the CHR method given by (7) applied to (17) 
gives  

1,2

1,2

0.173 1.104j,
0.085 1.149j

λ
λ

= ±

= ±
 (23)

for pairs { } { }, , ,C I C DK T K T , respectively. 
Due to a wide range of values, only some distinct 

values from (20)-(23) have been eventually taken, and the 
corresponding control responses are displayed in Figure 3. 
Note that reference and disturbance signals are identical 
with those in the preceding example. 

The corresponding control performance measures are 
given to the reader in Table 2. 

0 50 100 150
Time (s)

0

0.5

1

1.5

= 0.0851
= 0.2526
= 4.3061

1,2 = 0.088 0.276j

1,2 = 0.085 1.149j

1,2
= 0.173 1.104j

Fig. 3. Control responses comparison – the second order case. 

Table 2. Control responses quality – the second order case. 

1 2, ,λ λ λ e∆ 95T IAE
0.2526 0 22.8 12 

0.088 0.276j± 0.367 31.5 12.1 
4.3061 3.8·10-5 17.9 4.5 
0.0851 0 59.7 27.3 

0.173 1.104 j± 0.61 21.3 7.8 

0.085 1.149 j± 0.836 17.6 11.5 

It seems that a higher value of λ  yields a better 
control response. However, it is sacrificed to significant 
abrupt changes in the control action (not displayed 
herein). In the contrary, low values of λ  give very slow 
responses. Regarding complex conjugate pairs 1,2λ , it is 
apparent that a higher ratio of the particular imaginary 
and real parts results in a higher amplitude of 
oscillations; however, the settling time is reduced. The 
higher is the real part of the pair 1,2λ , the lower the 
integral error is.  

4 Conclusions 
In this contribution, a brief comparative study on the 
application of two well-established controller tuning 
methods to algebraic-based controllers has been presented. 
The controller has had a compensation (or, predictor) 
structure to attenuate the influence of input-output or 
internal (state) delays; however, its design has not been 
presented here – the reader has been referred to particular 
literature resources. As the tuning techniques, the 
Equalization Method and the Chien-Hrones-Reswick 
method have been applied to a trivial finite-dimensional 
approximation of the delayed controller. The application 
of well-established tuning rules to this class of controllers 
has been the main contribution of the paper. Two types of 
controlled plants have been considered; namely, stable 
systems of the first and second order. Numerical tests 
have indicated that the Equalization Method have 
provided better results in both the cases, and, surprisingly, 
a single tuning parameter has been a better choice 
compared to two degrees of freedom in the latter case. 
A possible further research direction in this field can be 
dedicated to the extension of presented principles to 
unstable systems, or to a thorough comparative study on 
the efficiency and performance of various well-
established tuning rules. 

This work was performed with the financial support by the 
Ministry of Education, Youth and Sports of the Czech Republic 
within the National Sustainability Programme project No. 
LO1303 (MSMT-7778/2014). 
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