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Abstract. The real time fire detection in video stream is one of the most interesting problems in computer 

vision. In fact, in most cases it would be nice to have fire detection algorithm implemented in usual industrial 

cameras and/or to have possibility to replace standard industrial cameras with one implementing the fire 

detection algorithm. In this paper, we present new algorithm for detecting fire in video. The algorithm is based 

on tracking suspicious regions in time with statistical analysis of their trajectory. False alarms are minimized 

by combining multiple detection criteria: pixel brightness, trajectories of suspicious regions for evaluating 

characteristic fire flickering and persistence of alarm state in sequence of frames. The resulting 

implementation is fast and therefore can run on wide range of affordable hardware. 

1 Introduction  
In this paper, we present new algorithm for detecting fire 
in video based on tracking suspicious regions in time with 
statistical analysis of their trajectory. Our goal was to 
develop a fast algorithm which can run on an affordable 
hardware with minimum rate of false alarms. 

The purpose of detecting fire in video is to improve 
current systems based on traditional fire and smoke 
detection sensors, which are limited in several ways: e.g., 
they cannot be used in industrial plants, where burning is 
an inherent part of the manufacturing process and/or 
where the occasional occurrence of smoke cannot be 
avoided. The current sensors have also relatively short 
range: they need to be close to the potential fire, so there 
must be many of them in order to cover all dangerous 
places. 

Cameras can monitor much larger areas and their 
operation can be more reliable then chemical or optical 
smoke sensors, which need to be regularly checked, 
cleaned or exchanged. Therefore, it is desirable to develop 
a camera-based fire detection system which can become a 
welcomed alternative to traditional fire and smoke 
detection sensors. 

Of course, there are already other systems for fire 
detection in video streams. What makes our system 
different is that it is very fast and doesn’t require too much 
computation power.  

2 Detailed description   
The entire algorithm is very simple. It consists of the 
following steps: 
 

1. Detect suspicious regions 

2. Find bounding rectangles 
3. Track rectangles in time 
4. Analyse trajectories 
5. Check for persistence 

 
In the following sections we will look at each step. To 
demonstrate, let’s use a video of a burning tree as an 
example. 
 
 
 

 
Fig. 1. Burning fire. 

 
 

2.1 Detecting suspicious regions 
 
The regions of interest in this case would be those pixels 
which have fire-like colour and also pixels which change 
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visibly in time (i.e. contain movement). Suspicious pixels 
are then a union of these two sets. 

2.1.1 Detecting pixels with fire-like colour 

Finding pixels based on colour is very simple and it can 
be done using different colour models like RGB, YUV, 
YCbCr HSI or HSV. [1][6][7] First two focus on colour 
spectrum and latter two on colour intensity. Fire is usually 
the brightest part in the video so using brightness as an 
additional criterion is very useful. 

In our algorithm we work with RGB colour model 
and the procedure looks like this: We take red (R), green 
(G), and blue (B) channels and calculate colour saturation 
(S).  

 
Then the following rules are applied: 
 

R >G>B 
S >ST 

where: 
ST is saturation threshold. 

 

 

Fig. 2. Fire colour map- 
 

2.1.2 Detecting movement 

To detect movement we actually need three frames. 
Because we need the previous, current and the next frame, 
the algorithm is always one frame behind a real-time 
video stream from a camera. 

Taking only greyscale frames, we basically subtract the 
background to detect motion in foreground. First we 
calculate an absolute difference between previous (fi-1) 
and next (fi+1) frame. This will subtract the background. 
Then we calculate an absolute difference between current 
(fi) and the next frame. This will update that information. 
Then we apply binary AND operator on the two 
calculated differences to obtain information about the 
movement in the foreground.  

                                | fi-1 -fi+1 |^| fi -fi+1 |  (1) 

It is also necessary to filter out lone pixels (i.e. noise) in 
the result movement map. The amount of noise depends 
on camera and lighting conditions. 
 

 

Fig. 3. Movement map. 

 

 
Fig. 4. Suspicious areas. 

 

2.2 Founding bounding rectangles 
 
The binary map of suspicious pixels will most likely 
consist of lots of small disconnected areas concentrating 
in separated larger regions. In one of our first attempt, we 
tried to find bounding rectangles for each of them and then 
to connect them into larger bounding rectangle if they 
were close enough to each other. This worked but also 
turned out to be very costly in terms of processing time. 
The solution was to dilate the small areas using a 
morphology operator. 

Dilatation (as a morphological operation) consists of 
convoluting an image with a small kernel shaped like a 
simple shape (circle, square, etc.). 

This results into much fewer bounding rectangles to 
be found and aggregated in the next step and significantly 
increases the algorithm speed. 

2.3 Tracking suspicious regions in time 
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Similarly to [8] we test suspicious regions fire-like 
characteristic in time. Our method consists of tracking. 
Before we start we need to aggregate found areas in space 
and then link them in time. 

2.3.1 Aggregating regions in space 

After we are done marking up areas of interest in each 
frame we need to look into previous frames to find out if 
we can link them to previously marked areas. 

For that we use a tree data structure consisting of 
two layers of bounding rectangles. 

In first frame, we add rectangles to the root of the 
tree. If a rectangle to be added overlaps (with added 
tolerance) any rectangles stored in the tree, they are all 
replaced with a rectangle which is based on the largest one 
and is large enough to contain all of them. The parent 
rectangle is not reduced in size in this step and they are 
added as its children. 

If they already have children, the children are moved 
to the new parent and the original parent is discarded. 

Once all the rectangles have been added to the tree, 
the bottom layer is removed. Before that we check if each 
top-layer rectangle has any children. 

If it has, we find the smallest bounding rectangle for 
all children and resize the parent to the average between 
the original and the smallest size. 

2.3.2 Linking regions in time 

If the parent ends up with no children, we reduce its RTL 
(right to live) parameter. If it has at least one child, we 
will set RTL to predefined maximum value. 

The RTL parameter basically tells us how long we 
will keep a rectangle which has not been updated (e.g. for 
3 frames). 

In all of the following frames, we repeat the same 
steps as with the first frame, but now we have preexisting 
first-layer. 

2.3.3 Tracking regions in time 

The tracking is based on keeping the history of middle 
points. These are not the centre points of bounding 
rectangles. Instead, we take the original map of suspicious 
regions (without applied dilatation) and average the 
coordinates of suspicious pixels. The new average point 
is then added to stack. 

The reason we use the stack is that we remove points 
if their count surpasses defined limit. 

 

 

Fig. 4. Suspicious region’s trajectory. 
 

2.4 Analysing trajectories 
 
This and the following step are very important. Without 
them, we would be detecting a large spectrum of objects 
and features which are similar to fire in colour and in “not 
being static”. The fire, however, has a very specific way 
of moving. First of all, it stays in one place and is 
characteristic by constant flickering. This is very useful 
because it’s hard to find anything else what is (yellow and 
bright and) constantly changing shape while staying in 
one location. The trajectory of the middle points should 
basically fit the normal distribution. 

To test this with our suspicious regions, we use 
horizontal and vertical coordinates of the middle points. 
First we calculate the mean value μ and the standard 
deviation σ for each axis. If the distribution is normal, 
according to the gaussian curve, 68.2% of values should 
belong to the interval: 
 

                                    (μ-σ,μ+σ)  (2) 

Since we work with object that doesn’t only change shape 
but also size over time, it is not wise to rely on too many 
values to increase precision. Instead, we work with fewer 
values (according to our tests, the optimal number seems 
to be around 100) and expect some reasonable error. That 
is why we had settled to expecting 60% of data to fall into 
the above specified interval. 
 

2.5 Checking for persistence 
 
To further eliminate false alarms, we apply the last 
criterion, which is persistence. If the previous step gives 
us positive result, we don’t trigger the alarm yet but save 
it. This we do for each frame. 

Depending on the video source quality and captured 
scene properties, we usually set the persistence limit to at 
least 15 seconds (which would be 375 frames for 25 fps 
video source) or even more. With such setting, we found 
our algorithm gives satisfactory low false alarm rates. 
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Longer persistence limit could result in longer delay or 
missing short positive detections. 

To evaluate persistence, we don’t require the 
positive test on normal distribution in each frame. It can 
be just some higher percentage. Empirically, we had set it 
to the top quarter. 
 
 
 

 

Fig. 6. Output screen. 
 
3 Algorithm parameters 
 
There are several parameters which need to be set after a 
camera providing video stream for our algorithm is 
installed into a new environment.  

3.1 Brightness threshold  

Defines the minimum brightness needed for classifying 
pixels as fire-coloured. Normally the best value would be 
around 225 (out of 255) but in some test videos it had to 
be adjusted because the fire was too dark due to the type 
of video source. 

3.2 Movement threshold  

During the movement detection processing the camera 
noise is reduced by filtering out some lone pixels. This 
parameter sets the threshold. Usually in badly illuminated 
areas the threshold needs to be set higher. This is 
important because noise has normal distribution so it 
could cause a false alarm. 

3.3 Small regions gap size  

Maximum distance between two bounding rectangles of 
small regions that can be aggregated. This parameter 
should have a small value (e.g. 10 px) and depends on 
video resolution. 

3.4 Regions minimal size  

If there are too many very small regions found because of 
camera noise, we eliminated them by setting a minimal 
bounding rectangle size. If the size is set too high, small 
flames will not be detected. If it’s too low, the noise can 
trigger false alarm. 
 

3.5 Region “right to live”  

As was explained in the previous chapter, this parameter 
sets how long we keep a region appearing to be empty in 
a few frames. 

This mostly happens when there is no movement 
detected. Since the fire has multiple independently 
moving flames it can be expected that with high 
probability, it will not stop moving for more than few (e.g. 
3) frames. 

3.6 Number of middle points 

The parameter defines how many middle points we want 
to remember for each region before we test them for 
normal distribution. It should be enough for this criterion 
to be calculated relatively accurately but also not too 
many so we adapt to changes in the scene quickly. We use 
empiric value of 100. 

3.7 Persistency interval 

This parameter determines the number of frames, for 
which a positive detection has to persist before triggering 
the alarm. This parameter needs to be changed according 
to number of frames per second in each video stream. 

The higher this number is the harder it is to fool the 
algorithm but also the longer delay we get. Fire keeps its 
characteristic movement all the time, but most other 
objects and phenomena move chaotically and in short 
intervals. In our tests, 15 seconds turned out to be 
sufficient minimal length. 

 
4 Performance 
 

To test our algorithm, we had acquired several 
videos containing flames, moving bright objects and 
phenomena similar to fire. 

4.1 Algorithm speed 

Our algorithm is very simple so when optimized, it runs 
in real time on average hardware. It does not rely on 
frequency of fire flickering unlike some algorithms so the 
frame rate doesn’t have to be that high either. 

How fast the algorithm detects flame really depends 
on the camera setting and scene characteristics, but in 
ideal conditions it depends solely on the defined length of 
the minimal persistence interval. 

Not ideal conditions would be e.g. the flame is too 
small or too far from the camera, if the flame is not fully 
visible in camera’s field of view or the flame movement 
is being distorted by another moving object (in one test 
video it was a burning piece of wire rolling out of flames). 

4.2 Strengths and weaknesses 

Similarly to other fire-detecting algorithms, the most 
concerning weakness is false alarm ratio. Avoiding false 
alarms is implemented by combining multiple criteria 
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[2][3][4][5]. If all criteria are fooled, the false alarm 
occurs. 

During our testing we had encountered some 
problematic scenes. To test the constant movement with 
normally distributed middle points of suspicious regions 
we had used some videos of dancing people. Interestingly, 
some types of dance don’t have the normal distribution of 
movement and some do. 

In the end, none of these videos triggered the alarm 
but some were really close. When dancing, the movement 
often briefly stops and that makes the persistence criterion 
come out negative. 

What was most problematic was white background 
in some videos. Anything what moves in front of such 
background can pass the movement-and-brightness 
criterion because even when the object is not bright the 
algorithm sees only bright areas changing shape as the 
object covers and uncovers the background. 

Other concern we have is with natural phenomena 
similar to fire. When testing the algorithm on videos of 
sunset being reflected on moderately moving ocean 
surface, the false alarm was triggered every time. This 
means that our algorithm cannot be used at locations 
where something like this occurs. However, it can be 
useful in locations such as a factory hall or a tunnel where 
these phenomena don’t appear. 

Other than that, our algorithm proved to work 
without problems and was almost impossible to fool 
intentionally when processing real time camera input. 

5 Conclusion 

We had developed and successfully tested a new 
algorithm. In this stage in can be used with any camera 
system and will work mostly without error. However, 
there are certain situations in which the algorithm triggers 
false alarm. This will be the subject of our future research. 
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