

Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679

ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

THE CREATING AND PREPARING 3D GRAPHICS MODELS TO USE THEM IN THE

REAL-TIME APPLICATION

POKORNY, P[avel]

Abstract: The important part of the modern 3D applications is

the visual look. The bad graphics design can deprecate many

users. This graphics design especially depends on the quality of

the 3D graphics models and their surface - used materials and

textures. But the high poly models and high quality textures are

very heavy for the computer, whereon is this application

running. This paper describes my experience with the

possibilities of optimizations of 3D models, which can help to

make real time applications with the high quality graphics

design.

Key words: computers, graphics, modelling, visualization

1. INTRODUCTION

The modern real-time applications are mostly complicated

and large applications with the many functions and

possibilities. The software developers also implements into

their software comfortable user interface and suitable graphics

design, which makes the best communication between the

application and the user. The very important part of the

graphics design is own graphics output. Many of application

(like graphics programs or computer games) offer the three

dimension visualization. But the best quality of visualization

graphics brings much more system and hardware requirements

of the computer, on which is this application running.

The most difficult situation arises in applications that visualize

real world. One example could be a computer game. The actual

story takes place in any environment. The virtual environment

(world) can be formed by the ocean, mountains or natural

landscapes. (Lander, 2003) Next, in this environment, there are

exist hundreds or thousands objects (trees, stones, buildings,

characters, etc.). And we want to visualize all of these objects

and fluently animate in the real-time. The modern computers

are very powerful computer, but they are not still capable to

compute and render so much of data in the high quality in the

real-time. Also we need to seek the ways how to optimize the

3D models and visualization algorithms.

2. 3D MODELS REPREZENTATION

The first problem is the 3D object representation. There are

many types of representation, but currently the boundary

representation is most used. The borders of objects are most

represented by the analytic or by the polygons. (Zara, 1998)

The analytic boundary representation is based on theory of

curves and surfaces. The parametric and implicit surfaces are

very often used in the sphere of computer graphics. The

greatest advantages of this representation are the accuracy and

low memory economy. This representation is also often used in

the CAD/CAM systems or architecture.

The polygonal boundary representation (fig. 1) is based on

polygons. The base polygon is a triangle, but many APIs like

OpenGL or Direct3D also supports quadrilaterals or general

polygons. (Shreiner et al., 2006) (Walnum, 2006) This

representation does not have the advantages like analytic

representation, but the polygons are very suitable for

visualization (render) algorithms like ray-tracing. The second

advantage is the polygonal boundary representation. This is the

standard supported by the hardware devices (graphics cards).

This means, most of the operations with the polygons are

accelerated. Also in the final phase, the analytic boundary

representation is transferred into the polygonal boundary

representation. (***, 1997)

Fig. 1. The polygonal object representation (wire frame)

3. MODELLING

To create 3D models, we need to choose a suitable graphics

program. There are many programs in this area, commercial

and non-commercial, which have a greater or lesser number of

tools for creating graphics models. The most sophisticated

programs of non-commercial sector includes program Blender,

with which I have much experiences.

Blender is the free open source 3D content creation suite,

available for all major operating systems under the GNU

General Public License. Blender has a large number of graphics

tools, like modelling, shading, UV unwrapping, imaging and

compositing and works with physics and particles, rendering,

simple and complex animation. (***, 1998)

Blender contains a huge number of modelling tools for the

analytic and polygonal representation. In the field of analytic

representation here we can add and modify various 3D objects

begins with simple curve or a circle and ending with a complex

3D surface. Manipulation of these objects is simple and it can

easily connect individual curves or surfaces. Upon completion

of this modelling is the representation usually converted into a

polygonal representation, as stated in the previous paragraph.

For the models defined by a polygonal representation is

available to an even greater number of modelling tools. In

Blender, these objects are generally named as the mesh and

being characteristic, that consists of vertices, edges and faces.

In the simplest elements can freely manipulate and apply them

0611

tools like Extrude, Subdivide, Smooth, Decimate, SubSurf,

Spin or Modifiers. (fig. 2)

After creating 3D models, it is continued with the setting of

the material properties, texturing (there is usually used UV

Unwrapping for precise application of textures), and possibly

animation. (Pokorny, 2009)

Fig. 2. Mesh modelling tools in Blender

Depending on the type produced by the model and its

purpose is usually the entire process of modelling complex. If

we create a model, that will be used in any application, it is not

just important its visual impression, but also its optimization.

This is primarily to minimize the number of vertices, edges and

faces for faster rendering later, but at the cost to a minimum

loss of model quality. Both requirements are contradictory, so

they used all sorts of compromises to achieve as much as

possible of both. This includes tools to minimize the number of

vertices. This is normally addressed by creating two versions of

the 3D model - low poly and high poly. High poly is the perfect

model with the maximum number of vertices created so, that

best suited to the object that is the subject of modelling. For

him, then are textures unwrapped (specifically concerns the

normal maps), which they are later applied to the low poly

model. The low poly model is considerably simplified, but it

was good applications can achieve a good texture quality very

close to the high poly model. The application is later using of

course low poly model with these textures. In Blender, this

process is called Baking.

My personal experiences also show, that it is necessary to

check the existing vertices (which often happens that the model

contains redundant vertices, which later present computational

process of rendering).

4. EXPORTING MODELS

After the 3D model is created, textured and possibly

animated, we need him to pass and for use in our application.

Perhaps all of the 3D graphics programs have its own format,

which structure often is not publicly known or it is too

complicated. Fortunately, there are existing 3D graphics

formats that can be called universal and are certified for years

in many applications. These formats include files with

extensions .x (DirectX), .3ds (3D Studio), .bsp (Quake 3 levels)

or .wrl (WRML). A big advantage of these formats is the

available documentation and the number of libraries that are

able to read or to write them well.

In Blender, all these formats can be found under the File-

Export menu. In the ground state, it only exports alone mesh

object. To export also the UV coordinates of textures, all of

these textures must be mapped on a 3D model with UV

mapping.

5. IMPLEMENTING INTO THE APPLICATIONS

Very important factor in the whole process of rendering

complex 3D scenes in real-time is not only to optimize the 3D

model itself and its texture, but also the appropriate

organization of the entire program, especially the part, that

deals with the visualization of the whole scene. The biggest

impacts have the rendering algorithms and the administration of

created 3D graphics models including textures. The entire

organization and connecting between algorithms are very

complicated, and everything depends on the skills and

experience and the programmers, who created the particular

application. In some cases, we can help out and finished the

existing libraries and engines that may have already

programmed most of the used algorithms.

An example of such an engine can be Irrlicht, with which I

have very good experience. Irrlicht is a cross-platform high

performance real-time 3D engine written in C++. It features a

powerful high level API for creating complete 3D and 2D

applications such as games or scientific visualizations. It comes

with an excellent documentation and integrates all state-of-the-

art features for visual representation such as dynamic shadows,

particle systems, character animation and collision detection.

All this is accessible through a well designed C++ interface,

which is extremely easy to use. (***, 2003)

6. CONCLUSION

The modern real-time applications with the 3D graphics

visualization can be more exacting for computers, on which

they are running. By default, the frequent requirement of very

good graphics needs more system and hardware computer

resources. This is, why we are looking for the ways, how to get

the best graphics quality in the real-time together with the

minimal load of the computer. This paper describes my own

experiences, possibilities, how to do it in two phases - the 3D

models creating and exporting them into the own applications.

My experience shows, that the software optimization is mostly

limited by the possibilities of computer hardware.

7. ACKNOWLEDGEMENTS

This work was supported by the Ministry of Education of

the Czech Republic in the range of research projects No. MSM

7088352102.

8. REFERENCES

Lander, J. (2003). Graphics Programming Methods, Charles

River Media, ISBN 1-58450-299-1, Hingham,

Massachusetts

Pokorny, P. (2009). Blender – teach yourself 3D graphics (in

czech), BEN – technicka literatura, ISBN 80-7300-244-2,

Prague

Shreiner, D.; Woo, D.; Neider, J. & Davis, T. (2006). OpenGL

programming guide (in czech), Computer Press, ISBN 80-

251-1275-6, Brno

Walnum, C. (2006). Direct3D Programming Kick Start, Sams,

ISBN 978-0672324987, Indianapolis, Indiana

Zara, J.; Benes, B. & Felkel, P. (1998). The Modern Computer

Graphics (in czech), Computer Press, ISBN 80-7226-049-9,

Prague

*** (1997) http://www.opengl.org – OpenGL – The Industry

standard for High Performance Graphics, Accessed on:

2010-06-10

*** (1998) http://www.blender.org – Blender, the free open

source 3D content creation suite, Accessed on: 2010-06-10

*** (2003) http://irrlicht.sourceforge.net – Irrlicht Engine – A

free open source 3d engine, Accessed on: 2010-06-10

0612

Copyright of Annals of DAAAM & Proceedings is the property of DAAAM International and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

