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Abstract.  This paper introduces an overview of possible use of evolutionary techniques on catastrophic events 
detection. Catastrophic events here means Thom’s catastrophes that are part of chaotic dynamics and can be used to 
model bifurcations, that appears in the nonlinear behavior of various dynamical systems. Participation summarize yet 
obtained results as well as demonstration of another possible EAs use to detect Thom’s catastrophes.  
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INTRODUCTION 

Our world, mostly consisting of a nonlinear 
systems, is full of our i.e. human technology, that is 
less or more reliable. Technological systems are 
mostly, as their natural counterparts, nonlinear and 
complex and very often show chaotic as well as 
catastrophic behavior. The term “catastrophe” here 
means catastrophe according to Thom’s catastrophe 
theory [1]-[3], that describe sudden changes in the 
system behavior under slightly changing (usually) 
external conditions. This changes, depending on one or 
more parameters, can be modeled like the special N 
dimensional surfaces in the so-called parameter space, 
see Figure 2 - 3.  

As an example of such systems (and catastrophic 
events), can be mentioned systems like electrical 
networks (blackout, …), economical systems (black 
Friday, NY stock market 1929, …), weather systems 
(Lorenz model of weather born via series of 
bifurcations modeled by Thom’s catastrophes, [1]), 
civil construction falling (bridge collapse, etc), 
complex systems (self-criticality and spontaneous 
system “reconstruction” leading to the better 
energetically stability) and more.  

Different mathematical models, of which one 
possible is just mentioned Thom’s catastrophe theory, 
model such events.  

Our aim in this paper is to show, that it is possible 
to use evolutionary algorithms (EAs) to identify such 
events on mathematical models of such systems and/or 
it is possible to use EAs to design technological 

systems in such a way that possibility to reach regimes 
exhibiting sudden changes in their behavior (i.e. 
catastrophe events) is minimized. 

CHAOS, CATASTROPHES, AND 
SUDDEN CHANGES 

When hearing the word “chaos”, people who are 
not specialists in this field of science will normally 
imagine a process, which is of purely random nature 
and lacks any internal rules. Few people realize that 
“being chaotic” means strictly obeying precise rules 
where there is often no room for randomness. As 
indicated in the historical outline, chaos is a discipline 
which obtained its name only in the 20th century but 
whose roots date back to the 18th and 19th centuries, 
associated with the finding that even simple problems 
generate very complex and unpredictable behavior. 
For historical reasons, Hamiltonian systems were the 
first systems to be studied, represented then by 
celestial mechanics problems. Many rules, which are 
valid for a wide class of Hamiltonian systems 
generating chaotic behavior, were discovered, and 
were even found to apply to some dissipative chaotic 
systems as well. 

Chaos and Bifurcation 

Chaos can be easily visualized via so called 
bifurcation diagrams that show system dependence on 
selected control parameters and their setting. As an 
example can be used Figure 1 with bifurcation 
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diagram calculated from logistic equation (1). In this 
figure is depicted behavior of system with dependence 
on control parameter A. Figure 1 can be read as this: 
for parameter value say for example A = 3.5 there are 
possible 4 reachable states, i.e. system is oscillating 
with period 4, while for A = 3.7 there is an infinite 
number of points which indicate that system behavior 
– trajectory never repeat. That parts on bifurcation 
diagrams represent chaotic behavior, while those part 
with finite number of points (A = 3.5, 3.63, 3.82, …)  
deterministic one. Moment, when system is changing 
its behavior (from N periodical to 2×N, or to chaotic 
one) is called bifurcation. Route from deterministic 
behavior to chaos via series of bifurcations is one of 
routes leading to chaos. Increasing of from N 
periodical to 2xN periodical trajectory is also called 
period doubling, see [4]. 

Bifurcations and Catastrophes 

Bifurcations just described in the previous section 
can be modeled by Thom’s catastrophe theory. This 
theory [1]-[3], describe sudden changes in the system 
behavior under slightly changing (usually) external 
conditions. These changes, depending on one or more 
parameters, can be modeled like the special N 
dimensional surfaces in the so-called parameter space, 
see Fig. 2 and 3. 

 

  

FIGURE 1.  Bifurcation diagram of logistic equation. 

Each point in parameter space represents one of 
possible system configurations. Those points which 
are part of so called catastrophic fold (surface, plane, 
…) are related to system parameter configuration, 
when system is changing its behavior (moment when 
bifurcation occur).  

When system control parameter is changed then 
point in the parameter space move and moment when 
it cross through the catastrophic fold, then behavior of 
system is changed. This change can mean in reality 
changes in periodicity as well as switching to chaotic 
dynamic and/or also more drastic changes in system 

physical structure and behavior. Such changes then 
can lead, in reality, to real catastrophes like aircraft 
crashing, dam failure, collapse of building or power 
network, etc.  

As demonstrated in [1] on Lorenz system (weather 
model), born of chaos can be understand like a way 
through the series of bifurcations-Thom’s 
catastrophes. Mutual relation between Thom’s 
catastrophes and bifurcations is thus clear.  

 

FIGURE 2.  Catastrophe Fold. 
 
 

 

FIGURE 3.  Catastrophe Fold. 
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MOTIVATION 

Our aim and motivation is based on previously 
mentioned facts that between bifurcations and Thom’s 
catastrophes is clear relation and to identify Thom’s 
catastrophes in the dynamical system behavior can be 
(at least for a certain class of dynamical systems) 
identified so that bifurcations are located in the 
“universe” of the possible system behavior. It can also 
be done by rigorous mathematical analysis, however 
when the model is too complex or model of system is 
unknown and it is possible to play with system 
behavior without danger of technological disaster, then 
EAs can be used to explore possible system behavior 
and locate bifurcations i.e. equivalently Thom’s 
catastrophe. 

USED ALGORITHMS 

For the experiments described here, stochastic 
optimisation algorithms, such as Differential Evolution 
(DE) [5], Self Organizing Migrating Algorithm 
(SOMA) [6] had been used.  

Differential Evolution [5] is a population-based 
optimization method that works on real-number coded 
individuals. For each individual Gix ,

�
 in the current 

generation G, DE generates a new trial individual Gix ,′
�

 

by adding the weighted difference between two 
randomly selected individuals Grx ,1

�
and Grx ,2

�
to a third 

randomly selected individual Grx ,3

�
. The resulting 

individual Gix ,′
�

is crossed-over with the original 

individual Gix ,

�
. The fitness of the resulting individual, 

referred to as perturbated vector 1, +Giu
�

, is then 

compared with the fitness of Gix ,

�
. If the fitness of 

1, +Giu
�

 is greater than the fitness of Gix ,

�
, Gix ,

�
 is 

replaced with 1, +Giu
�

, otherwise Gix ,

�
 remains in the 

population as 1, +Gix
�

. 

Deferential Evolution is robust, fast, and effective 
with global optimization ability. It does not require 
that the objective function is differentiable, and it 
works with noisy, epistatic and time-dependent 
objective functions. 

SOMA [6] is a stochastic optimization algorithm 
that is modelled on the social behaviour of cooperating 
individuals. It was chosen because it has been proven 
that the algorithm has the ability to converge towards 
the global optimum. SOMA works on a population of 
candidate solutions in loops called migration loops. 
The population is initialized randomly distributed over 
the search space at the beginning of the search. In each 
loop, the population is evaluated and the solution with 

the highest fitness becomes the leader L. Apart from 
the leader, in one migration loop, all individuals will 
traverse the input space in the direction of the leader. 
Mutation, the random perturbation of individuals, is an 
important operation for evolutionary strategies (ES). It 
ensures the diversity amongst the individuals and it 
also provides the means to restore lost information in a 
population. Mutation is different in SOMA compared 
with other ES strategies. SOMA uses a parameter 
called PRT to achieve perturbation. This parameter has 
the same effect for SOMA as mutation has for GA. 

The novelty of this approach is that the PRT Vector 
is created before an individual starts its journey over 
the search space. The PRT Vector defines the final 
movement of an active individual in search space. 

The randomly generated binary perturbation vector 
controls the allowed dimensions for an individual. If 
an element of the perturbation vector is set to zero, 
then the individual is not allowed to change its 
position in the corresponding dimension. 

An individual will travel a certain distance (called 
the path length) towards the leader in n steps of 
defined length. If the path length is chosen to be 
greater than one, then the individual will overshoot the 
leader. This path is perturbed randomly. 

For an exact description of the algorithms, see [5] 
for DE and [6] for SOMA 

The control parameter settings have been found 
empirically and are given in Table 1 (SOMA), Table 2 
(DE). The main criterion for this setting was to keep 
the same setting of parameters as much as possible for 
all simulations and of course the same number of cost 
function evaluations as well as population size 
(parameter PopSize for SOMA, NP for DE). 
Individual length represents number of optimised 
parameters (parameter A in this case…). 

COST FUNCTION AND SELECTED 
CHAOTIC SYSTEM 

Main idea of this participation is to identify 
bifurcation (or equivalently Thom’s catastrophes, see 
[1]) by means of EAs. For this purpose has been 
selected logistic equation (simplified model of 
predator-prey system), see (1) and [4]. 

 

 )1(1 nnn xAxx −=
+  (1) 

 
Bifurcation diagram [4] (i.e. system dependence on 

control parameter) of this system is depicted in  
Figure 1. Lyapunov exponents of that system, related 
to parameter A, are depicted in Figure 4. Simply: when 
Lyapunov exponent is negative, system has 
deterministic behavior, when is positive, system is 
chaotic. When Lyapunov exponent is = 0 then 
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bifurcation can be observe in the system behavior 
(compare Figure 1 and 4). Then, to find that moments, 
we need to locate those parameter A for which 
Lyapunov exponent is = 0. It is enough to use absolute 
value and then we get Figure 5. Figure 5 represent cost 
function landscape, where values with 0 are settings of 
A for which bifurcation occur. One can see, that this 
surface is very erratic – chaotic and thus suitable 
candidate to find cost values with 0 are heuristics like 
evolutionary algorithms. 

 

  

FIGURE 4.  Dependence of Lyapunov exponent on 
parameter A, see (2). 
 

  

FIGURE 5.  An absolute value of dependence of Lyapunov 
exponent on parameter A, see (3). 
 

 
n

xfxfxf n )(ln...)(ln)(ln 10 ′++′+′
=λ  (2) 

 
 )2(=CV  (3) 

  
Cost function, used for depicting Figure 5, is given 

by (3) that is an absolute value of (2), see [4]. 
Graphically it is depicted in Figure 5. Used EAs were 
used to search for CV = 0. 

EXPERIMENT DESIGN 

Experiments has been deign as described in the 
Table 1 and Table 2. Two basic versions of algorithms 
SOMA and DE has been used: DERand1Bin and 
SOMA AllToOne. Each experiment was 50 times 
repeated and results are reported in the section Results. 

All simulations have been done on special grid 
computer. This grid computer consists of 16 XServers, 
each 2x2 GHz Intel Xeon, 1 GB RAM, 80 GB HD i.e. 
64 CPUs. It has been used for calculations so that each 
CPU was used like a single processor and thus a rich 
set of statistically repeated experiments were not a 
time problem. This does not means that such class of 
problems can be solved only on special computers. 
Solved problem reported here can also be done on 
single PC. Of course in different time scale. 

 
TABLE 1. Soma setting. 

PathLength 3 

Step 0.11 

PRT 0.1 

PopSize 100 

Migrations 200 

MinDiv -0.1 

Individual Length 30 

 
TABLE 2. DE setting 

NP 100 
F 0.9 
CR 0.3 
Generations 500 

RESULTS 

Results obtained in all experiments are reported in 
Table 3 (SOMA cost function evaluations), Table 4 
(DE cost function evaluations) and Table 5 that show 
minimal, maximal and average cost values given by 
experimentation. Table 6 shows localized positions of 
bifurcations.  

 
TABLE 3. SOMA Cost Function Evaluations 
Maximum 29504 
Average 8950 
Minimum 1395 

 
TABLE 4. DE Cost Function Evaluations 

Maximum 34582 
Average 11843 
Minimum 2694 
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TABLE 5. Cost Function values 

EA Min Average Max 
DE 5×10-15 1.6×10-13 1.5×10-7 

SOMA 4×10-14 2.3×10-11 7×10-3 

 

CONCLUSION 

In this participation have been used two different 
evolutionary algorithms in order to localize possible 
bifurcations in the chaotic systems. SOMA and DE in 
basic versions were used on simple system (1), called 
logistic equation, to localize bifurcations. Simulations 
were 50x repeated, so in total there has been done 100 
simulations. 

Based on results reported in the previous section it 
can be stated, that: 

 
1. Simulations. All simulations has been 

successfully finished by localization of 
bifurcation event, see Table 6. 

2. Precision. Located bifurcations were 
localized with high precision, however not 
exactly, see Figure 6. Geometrically it can be 
interpreted so that system is at the edge of 
catastrophic model (e.g. Figure 2) or almost 
before crossing the surface (e.g. Figure 3). 
Our opinion is that such non-precise 
localization can be useful, when applied on 
real system and bifurcation can cause real 
damage, which means that evolutionary 
search for bifurcations on real system can be 
stopped very near to bifurcation “position”. 

3. Algorithms. Used evolutionary algorithms 
were SOMA [5] and DE [6]. It is clear that 
other EAs can be also used as well as another 
strategies of DE and SOMA algorithms. This 
is now in the process. 

4. Chaotic systems. Beside well known logistic 
equation can another systems like Ikeda, 
Burger, Delayed Logistic, etc. be selected. 
Logistic equation (derived from predator prey 
system) has been chosen because is well 
known, and well investigated. Another 
systems (like those mentioned above) are now 
in the process of investigation.  

5. Simulation environment and software. 
Software used for all calculations, numerical 
simulations and visualizations was well 
known Mathematica 8. Thanks to fact that 
Mathematica is an integrated environment, 
time scale for each simulation was in minutes. 
It is clear that when C or another fast 
programming languages would be used, then 

time scale of simulation should be much more 
shorter and thus real use of this approach on 
real systems is possible. As reported in the 
Section 7, all simulations have been done on 
special grid computer. This grid computer 
consists of 16 XServers, each 2x2 GHz Intel 
Xeon, 1 GB RAM, 80 GB HD i.e. 64 CPUs. 
It has been used for calculations so that each 
CPU was used like a single processor and 
thus a rich set of statistically repeated 
experiments were not a time problem. This 
does not means that such class of problems 
can be solved only on special computers. 
Solved problem reported here can also be 
done on single PC.  

6. Multiple detection. In a few cases has been 
observed that used EAs had in the last 
population individuals at different position 
with almost the same cost function that 
represents multiple solutions, i.e. bifurcations 
at different positions.  

7. Localized bifurcations. It is important to 
note, that only main bifurcations has been 
localized. Bifurcations at exact positions   
were undiscovered, which imply space for 
future research, i.e. better algorithms setting, 
cost function improvement, etc. Figures 7-9 
clearly show, that there is a lot of another 
bifurcations, that were not localized by used 
EAs, so the question is what is borderline for 
EAs to be used on such kind of task. 

  
TABLE 6. Localized bifurcations at positions 

(aproximately), see Figure 6. 

Position 3.543 3.568 3.632 3.742 3.847 

SOMA 16 23 38 5 18 
DE 12 34 19 8 27 

 

 

FIGURE 6.  Composed picture show identified bifurcations 
(red dashed lines) that are in exact correlation with 
Lyapunov exponent, compare Figure 1 and 5 and Table 6. 
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FIGURE 7.  Identified and non-identified bifurcations. 
 

 

FIGURE 8.  Identified and non-identified bifurcations, 
zoom from Figure 7. 
 

 

FIGURE 9.  Non-identified bifurcations, zoom from the 
Figure 8. 
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