
 Procedia Engineering 100 (2015) 1672 – 1677

1877-7058 © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of DAAAM International Vienna
doi: 10.1016/j.proeng.2015.01.542

ScienceDirect
Available online at www.sciencedirect.com

25th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM
2014

A Time Performance Evaluation of the Soma Asynchronous Parallel
Distribution in Java and C#

Jan Kolek*, Roman Jasek
Tomas Bata University in Zlin, nam. T.G.Masaryka 5555, 760 01 Zlin, Czech Republic

Abstract

This paper compares two different implementations of the Self-Organizing Migrating Algorithm (SOMA), which is a highly
effective tool of an evolutionary optimization that is aimed at the same set of problems as Genetic Algorithms. One
implementation of algorithm was created in the C# framework and the second implementation in Java framework. Both
implementations are the asynchronous parallel ‘All-to-One’ strategy of SOMA, which is used to equally distribute computation
loads between several available processors/cores. The aim of our effort is to statistically evaluate the computation time efficiency
of these two concurrent frameworks including dependence on the number of threads. The obtained results are discussed in the
conclusion.
© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of DAAAM International Vienna.

Keywords: asynchronous; evolutionary algorithm; parallel; optimization; SOMA

1. Introduction

This paper belongs into area of optimization by artificial intelligence. One of many optimization methods is Self-
Organizing Migrating Algorithm alias SOMA. Our primary aim is compares two different implementations of the
SOMA. One implementation of algorithm was created in the C# framework and the second implementation in Java
framework. In the first test the dependence of solution quality on the number of used threads was evaluated and in
the second test the consumption of time was evaluated.

The SOMA is a very effective tool of evolutionary optimization. It was created in 1999. Algorithm is ranked
among evolution algorithms although there are not created new individuals during running the algorithm, in

* Corresponding author. Tel.: +420 57 603 5274.

E-mail address: kolek@fai.utb.cz

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of DAAAM International Vienna

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.01.542&domain=pdf

1673 Jan Kolek and Roman Jasek / Procedia Engineering 100 (2015) 1672 – 1677

contradiction with typical evolution algorithms. [11] Only the coordinates of individuals are changed in the area of
possible solution. Therefore, SOMA can be classified as memetic algorithm or among swarm algorithms more
accurately. The SOMA is inspired by the intelligent behaviour of groups of individuals in the nature, e. g. when they
searching food or finding the shortest way towards it. [8, 9, 10]

As it was already mentioned, the new individuals are not created by selective breeding but the algorithm only
changes coordinates of individuals. The evolution cycle, which is called „generation“ at other Genetic Algorithms,
was renamed to „migration loop“ in the SOMA. [3, 5] There are several strategies of elementary settings of SOMA.
One is the asynchronous parallel All-To-One, where all individuals are moved to the main individual which is called
Specimen. This strategy is used in our tests. [2, 7, 12]

2. SOMA

2.1. Parameter definition

Before starting the algorithm, SOMA’s parameters: Step, PathLength, PopSize, PRT and a Cost Function needs
to be defined. The run of the algorithm is influenced by settings of parameters indicated in Table 1. [1, 11]. The Cost
Function is simply the function which returns a scalar that can directly serve as a measure of fitness.

 Table 1. SOMA parameters.

Name of parameter Recommended range Comment

PathLength [1.1;>5] Control parameter

Step [0.11;PathLength] Control parameter

PTR [0;1] Control parameter

D Dimension Dimension of the problem

PopSize [10;define the user] Control parameter

Migrations [10;define the user] Termination parameter

MinDiv [±arbitrary;define the user] Termination parameter

2.2. Creation of the population

The population of individuals is randomly generated. Each parameter for every individual has to be randomly
chosen from a given range <Low, High>.

2.3. Migration loop

All individuals from population (PopSize) are evaluated by the Cost Function and the Leader (individual with
the highest fitness) is chosen for a current migration loop. Subsequently, remaining individuals begin to jump,
(according to the Step definition) towards the Leader. Each individual is evaluated after every jump using the Cost
Function. Jumping continues until a final position defined by the PathLength is reached. New position xi,j after
each jump is calculated by (1). This is shown graphically in Fig. 1. Individual returns then to that position where
they found the best fitness on their trajectories. [1, 7]

1674 Jan Kolek and Roman Jasek / Procedia Engineering 100 (2015) 1672 – 1677

Before an individual begins its jumping towards the Leader, a random number rnd is generated (for each
individual’s coordinate), and then compared with PRT. If a random number generated is larger than PRT, an
associated coordinate of the individual is set to 0 by the means of PRTVector.

Hence, the individual moves in the N-k dimensional subspace, which is perpendicular to the original space. This

fact establishes a higher robustness of the algorithm. Earlier experiments have demonstrated that, without the use of
PRT, SOMA tends to determine a local optimum rather than the global one. [2, 4]

2.4. Test for stopping condition

If a maximum number of migration loops has been reached, stop and recall the best solution(s) found during the
search.

3. Experimental settings for evaluation of performance

The aim of the experiment is a performance evaluation of asynchronous parallel algorithm SOMA based on
classical one-thread strategy All-To-One. The SOMA which was tested was modified so that it not used only one
thread but it used just as many threads how many processor cores is available. The proposal and description of such
implementation of SOMA was firstly published and can be found in [6].

The asynchronous SOMA (in contrast to synchronous version of the algorithm) does not wait for all individuals
to finish their paths to Leader. If any individual gets better position than the current Leader, this individual becomes
promptly the new Leader. The other individuals continue their path towards this new Leader promptly, not towards
the original Leader. This method significantly accelerates and increases the opportunity to finding global extreme
value. [1,4]

The experiment was performed on the personal computer from the ACER company with two-core processor
AMD Athlon 4960 (64-bit) and the operating memory 3 GB DDR2 under operating system Windows Vista 64-bit.
The asynchronous parallel SOMA was tested for these 10 test functions, proposed as the benchmark. The functions
are shown there for better clarity:

 (1)

 (2)

 (3)

 (4)

1675 Jan Kolek and Roman Jasek / Procedia Engineering 100 (2015) 1672 – 1677

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

All tests were performed in 100 dimensional space (each function has 100 coordinates) and the process of
optimization was 100-times repeated. In all cases, new initial population was again generated as starting point of the
optimization. The parameters for tests were set on Step = 0.11 (Rosenbrock Step= 0.011) and PRT = 0.1.

 Table 2. Parameters of SOMA used in the experiment.

Test
function

 PathLength PopSize Min Max Real extreme (minimum)

Ackley (1) 3 100 -20 20 0

EggHolder (2) 3 60 -512 512 not known

Griewangk (3) 3 100 -50 50 0

Masters (4) 3 60 -5 5 -100

Michalewicz (5) 0,5 60 0 3 98,10

Rana (6) 3 100 -512 512 not known

Rastrigin (7) 3 100 -5 5 -20000

Rosenbrock (8) 0,5 60 -3 3 0

Schwefel (9) 3 60 -512 512 -41898,3

Sine Wave (10) 0,5 100 -10 10 0

Table 2. describes others parameters which were used in tests and also expected optimal results (real extreme) of
used benchmark functions (1) – (10).

4. Evaluation the dependence of solution quality on the number of used threads

The founding solutions for both implementations of the SOMA (C# and Java) are shown in Table 3. It provides a
comparison of quality solutions from both implementations and the better solution is in bold.

1676 Jan Kolek and Roman Jasek / Procedia Engineering 100 (2015) 1672 – 1677

 Table 3. Comparison implementations of algorithm.

Test
function

 Java

1thread

Java

2threads

C#

1thread

C#

2threads

Real extreme
(minimum)

Ackley (1) 236.82 244.31 245.92 237.51 0

EggHolder (2) -54872.35 -46925.03 -56327.15 -62374.70 not known

Griewangk (3) 0.01 0.09 0.08 0.03 0

Masters (4) -91.31 -91.17 -88.47 -91.62 -100

Michalewicz (5) -87.53 -90.84 -85.05 -88.49 -98,10

Rana (6) -23679.98 -27413.65 -22513.29 -32424.71 not known

Rastrigin (7) -187802.35 -194313.64 -947986.86 -173362.87 -200000

Rosenbrock (8) 854.41 497.49 731.14 551.27 0

Schwefel (9) -39871.42 -41540.04 -40297.83 -41068.55 -41898,3

Sine Wave (10) 57.19 59.28 63.46 55.83 0

As be seen in Table 3 implementation in Java was best in 2 causes for one thread and in 3 causes for two threads.
Implementation in C# was best in 1 cause for one thread and in 4 causes for two threads. It can mean that there is
not dependence finding of best solution on number of used threads and used implementation. Finding of good
solution depends on the random start population of optimization rather than on used implementation of SOMA. Both
implementations are equal and so we can compare time consumption of both implementations.

5. Evaluation the time consumption

The main aim of this paper was to compare which of two implementations (Java, C#) has better computational
time. The results are shown in a table 4. The table shows that the asynchronous parallel SOMA which was created in
C# is better in 7 cases from 10. For example, in the case Michalewicz test function, which is most calculation
demanding from the used benchmark function, it was more than two times faster. By way of contrast, the
asynchronous parallel SOMA created in Java was marginally faster only in 3 cases.

 Table 4. Comparison of time consumption.

Test
function

 Java

1thread

time [s]

Java

2 threads

time [s]

C#

1 thread

time [s]

C#

2 threads

time [s]

Ackley (1) 77.89 40.20 43.21 21.81

EggHolder (2) 21.73 11.12 12.59 6.69

Griewangk (3) 10.73 5.93 17.45 9.07

Masters (4) 45.37 23.32 33.30 16.67

Michalewicz (5) 92.62 46.80 42.81 21.61

Rana (6) 37.98 19.36 20.60 10.29

Rastrigin (7) 11.91 6.74 15.27 7.74

Rosenbrock (8) 12.02 11.16 28,25 14.32

Schwefel (9) 11.20 6.15 9,01 4.60

Sine Wave (10) 84.96 43.57 61,93 31.15

1677 Jan Kolek and Roman Jasek / Procedia Engineering 100 (2015) 1672 – 1677

Conclusion

Table 3. shows results for evaluate the dependence of solution quality on the number of used threads. The
experiment verified that both implementations of asynchronous parallel SOMA are equal from the point of view a
quality of found solution. Both implementations of SOMA won in 5 cases from 10. Finding of good solution
depends on the random start population of optimization rather than on used implementation of SOMA.

Regarding the main experiment’s result, it can be concluded that the implementation of SOMA created in C# is
significantly better in time consumption. How can be seen in Table 4, this implementation was faster in 7 cases from
10 cases for two threads, certainly. For the Michalewicz test function, which is most mathematically complex, it was
even faster more than two times. Such results may indicate that C# (.NET Framework) has got a more effective
library for calculating complex mathematical functions. Calculating of mathematical functions was the most time-
consuming operation for both implementations of SOMA.

Subsequently, we are going to suggest an experiment to prove this hypothesis.

Acknowledgements

This paper is supported by the Internal Grant Agency at TBU in Zlin, projects No. IGA/FAI/2014/027.

References

[1] Zelinka,I.,, “SOMA - Self-Organizing Migrating Algorithm“. In New Optimization Techniques in Engineering. Springer, 2004. ISBN: 978-3-
 540-20167-0.
[2] Senkerik R., Oplatkova Z., Zelinka I., Davendra D. Synthesis of feedback controller for three selected chaotic systems by means of

evolutionary techniques: Analytic programming, Mathematical and Computer Modelling, Available online 27 May 2011, ISSN 0895-7177,
10.1016/j.mcm.2011.05.030.

[3] Chramcov B., Beran P., Daníček L., Jašek R.. A simulation approach to achieving more efficient production systems. International Journal of
Mathematics and Computers in Simulations, 2011, year 5, issue 4, page 299-309. ISSN 1998-0159.

[4] Král E., Vašek, L., Dolinay V., Čápek P. Usage of Peak Functions in Heat Load Modeling of District Heating System. In Recent Researches
in Automatic Control. Montreux : WSEAS Press, 2011, p. 404-406. ISBN 978-1-61804-004-6.

[5] Pospíšilík M., Kouřil L., Motýl I., Adámek M. Single and Double Layer Spiral Planar Inductors Optimisation with the Aid of Self-Organising
Migrating Algorithm. In Proceedings of the 11th WSEAS International Conference on Signal Processing, Computational Geometry and
Artificial Vision. Venice : WSEAS Press (IT), 2011, p. 272 - 277. ISBN 978-1-61804-027-5

[6] Zelinka I., Studies in Fuzziness and Soft Computing, New York : Springer-Verlag, 2004.
[7] Vařacha P. Innovative Strategy of SOMA Control Parameter Setting. In 12th WSEAS International Conference on Neural Networks, Fuzzy

Systems, Evolutionary Computing & Automation. Timisoara : WSEAS press, 2011, p. 70-75. ISBN 978-960-474-292-9
[8] Pivnickova, L., Vasek, V., Dolinay, V., Algorithms in the examination of the postural stability, In procceedings of the 10th WSEAS
 International Conference on Electronics, Hardware, Wireless and Optical Communications (EHAC'11), Cambridge 2011, pp.374-376, ISBN:
 978-1-61804-004-6.
[9] Král E., ET AL, Using PSO Algorithm for Parameter Identification of Simulation Model of Heat Distribution and Consumption in Municipal

Heating Network. In Proceedings of the 21st International DAAAM Symposium „Intelligent Manufacturing & Automation: Focus on
Interdisciplinary Solutions“ Vienna : DAAAM International Vienna , 2010. p. 1043 - 1044. ISBN/ISSN: 978-3-901509-73-5.

[10] Jadlovská, A. – Katalinic, B. – Hrubina, K.: Optimal Control of Complex Processes, In: Proceedings of the 15th International DAAAM
Symposium, „Intelligent Manufacturing & Automation: Globalisation-Technology - Men-Nature“, 2004, Published by DAAAM International,
Vienna, Editor B. Katalinic, pp. 178-179, Austria 2004, ISBN 3-901509-42-9, ISSN 1726-9679.

[11] Donald Davendra, Ivan Zelinka, Magdalena Bialic-Davendra, Roman Senkerik, Roman Jasek, Discrete Self-Organising Migrating
Algorithm for flow-shop scheduling with no-wait makespan, Mathematical and Computer Modelling, Volume 57, Issues 1–2, January 2013,
Pages 100-110, ISSN 0895-7177, http://dx.doi.org/10.1016/j.mcm.2011.05.029.

[12] Ivan Zelinka, Donald David Davendra, Roman Šenkeřík, Michal Pluháček, Investigation on evolutionary predictive control of chemical
reactor, Journal of Applied Logic, Available online 18 November 2014, ISSN 1570-8683, http://dx.doi.org/10.1016/j.jal.2014.11.009.

