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ABSTRACT 

Two types of nano/micro sized mica powders for polymer composites, muscovite and 

phlogopite, were tested for their sound absorption capabilities. Acoustical performance was 

correlated to surface energy analysis and powder rheology testing. Inverse gas 

chromatography (iGC) was used to determine the surface energy, with the dominant 
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component being the dispersive component.  This reflected the non-polar, hydrophobic, 

character of the micas. The determined yield locus and Mohr´s circles indicated that the 

material with the highest packing density exhibited more free flowing powder characteristics, 

compared with the lower packing density materials, which exhibited a greater cohesive 

powder flow behaviour. All tested mica powders were sensitive to aeration and become 

fluidised. Based on the acoustical measurements the worst sound absorption performance was 

found for the highest packing density material exhibiting the highest magnitude of the 

longitudinal elastic coefficient. 

 

Keywords: A. Particle-reinforcement; B. Surface properties; B. Rheological properties; B. 

Physical properties; E. Powder processing. 

 

1. Introduction 

There is a rapidly increasing application of nano particles in most industrial sectors across the 

globe. Their use is significant benefits to many products, and a large number of research and 

industrial organisations are attempting to create “nano material” products. The manufacture of 

large quantities of nano materials, especially in the composite materials market has become a 

reality and wide range of commercial products can be provided for the global market. 

Similarly, the surface coatings and paint industries have also started to use available nano 

materials. Investigations have shown that the size of nano-particle fillers is likely to be the 

reason behind the performance increase when compared to micrometer sized particles [1,2].  

Paint and low temperature coating technologies have moved from a basic chemical process to 

one where it is now a combination of metallurgy, chemistry and physics, with chemistry at the 

molecular level approach being now of greatest interest. Typically, colloidal slurry coatings 

are manufactured for a wide variety of applications, and are used for hard clear coats for 
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supersonic plastic wind screens, intumescent paints to protect composites, metals and parts 

such as fuel pumps from fire and erosion coatings for leading edges of wings on sub sonic 

aircraft. These coatings are also used on: wind turbines, ensuring the longevity of the aerofoil 

shape; erosion resistant coatings for the leading edges of wings on supersonic aircraft and 

missiles; erosion coatings on both land based and aeronautical gas turbine parts; in the steel 

industry for extreme environment protection in the moulds of steel continuous casters; and 

coatings to down-hole directional drilling mud rotors in the oil industry. High temperature 

oxidation slurry coatings such as those based on alumina and aluminides are used as overlay 

barrier coatings in high temperature oxidation applications, dry film lubricants for a wide 

range of applications, chemical resistant coatings, semiconducting coatings and others. In the 

last few years, silicate minerals were used in many composite materials technical applications 

[3]. Incorporating inorganic fillers into thermoplastic/thermosetting polymer networks result 

in improved physico-chemical, mechanical, and electrical insulation characteristics. For this 

reason the research and development activities focused on composites containing inorganic 

filler is of increasing importance. Composite materials matrix modification, its degree of 

crystallinity, type of reinforcement, quality of adhesion between filler and matrix, filler 

particles size, size distribution and shape [4,5] as well as the addition of coupling agents 

enhancing filler/matrix adhesion affects both, the physico-chemical and thermo-mechanical 

properties, as well as the internal structure and strength of final composites.  

The mica group of sheet silicate (phyllosilicate) minerals includes several closely related 

materials with close to perfect basal cleavage. All are monoclinic, with a tendency towards 

pseudohexagonal crystals, and are similar in chemical composition. The nearly perfect 

cleavage, which is the most prominent characteristic of mica, is explained by the hexagonal 

sheet-like arrangement of its atoms. Chemically, micas can be given the general formula  

X2Y4–6Z8O20(OH,F)4 in which X is K, Na, or Ca or less commonly Ba, Rb, or Cs; Y is Al, Mg, 
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or Fe or less commonly Mn, Cr, Ti, Li, etc.; Z is chiefly Si or Al, but also may include Fe3+ or 

Ti. As mentioned above, the micas have layer structures in which silicate sheets are combined 

with aluminate units; the aluminum ions can be octahedrally as well as tetrahedrally 

coordinated. For example, the mica muscovite KAl2(OH)2(Si3AlO10) contains both octahedral 

and tetrahedral Al3+ cations. The potassium ions are located between the fiat aluminosilicate 

sheets. Phlogopite, KMg3(OH)2(Si3AlO10), has a similar structure but with Mg2+ in octahedral 

environments instead of Al3+. The structure and microtopography of mineral filler surfaces are 

very important because they directly affect surface chemical reaction rates and mechanisms. 

In general, the surface structure of a mineral differs from the internal structure, however the 

structure of mineral surfaces may relax due to slight displacements of surface atoms in 

response to the force asymmetries at the surface or may reconstruct to a surface unit cell of 

different size and symmetry from that of the equivalent bulk plane [6]. The observed degree 

of surface relaxation, a consequence of rotation and tilting of SiO4 tetrahedral after cleaving, 

is larger in muscovite than in phlogopite. A more tetrahedral rotation after removal of the 

interlayer K is observed in muscovite. This is due to the greater limitation in the amount of 

tetrahedral rotation in the internal structure by the interlayer K in muscovite than in 

phlogopite [6].  

This paper focuses on the application of powder rheology, surface energy analysis and 

acoustical performance testing to evaluate mica powder materials as effective fillers for 

composite materials applications.  

 

2. Theoretical background 

2.1. Surface energy analysis 

The surface free energy of a solid can be described as the sum of the dispersive and specific 

contributions. Dispersive (apolar) interactions, also known as Lifshitz-van der Waals 
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interactions, consist of London interactions which originate from electron density changes but 

may include both Keesom and Debye interactions [7-9]. The dispersive component of the 

surface energy (
D
Sγ ) can be calculated from the retention time of a series of n-alkane probes 

injected at infinite dilution as measured using inverse gas chromatography (the probe 

concentration falls within the Henry´s Law portion of the adsorption isotherm) [8,10,11]. 

There are two methods of determining the surface energy from inverse gas chromatography: 

the first one isaccording to Schultz et al. [12] (Equation 1); and the second one according to 

Dorris and Gray [13] (Equation 2): 

 

( ) ( ) CNaVRT D
SA

D
LN +=

2/12/1
2ln γγ    (1) 

 

where R is the universal gas constant, NA is Avogadro´s number, 
D
Lγ is the dispersive 

component of surface free energy of the liquid probe, 
D
Sγ is the dispersive component of the 

surface free energy of the solid and C is a constant, and 
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where 
2CHa is the surface area of CH2 (~0.6 nm2) and 

2CHγ is the free energy of CH2 

(approximately 35.6 mJ/m2). 

 

2.2. Sound absorption measurements 
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The ability of a material to absorb incident sound is described by the sound absorption 

coefficient α, which is given by the ratio [14]: 

i

d

P

P=α         (3) 

where Pd is the dissipated power in the tested material, and Pi is the incident power. Sound 

absorption is influenced by many factors, including: excitation frequency; material thickness; 

porosity; density; and design [15,16]. Frequency dependencies of the sound absorption 

coefficient of materials can be determined by the transfer function method ISO 10534-2 [17-

19]. The complex acoustic transfer function H12 is expressed by the formula: 
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where p1 and p2 are the complex acoustic pressures at two microphone positions, k0 is the 

complex wave number, x1 and x2 are the distances between two microphones and the material 

sample, r is the normal incidence reflection factor [19], expressed by the following equation: 

ixk

R

I
ir e

HH

HH
irrr 102

12

12 ⋅⋅
−
−=+=    (5) 

where rr and ri are the real and imaginary parts of the normal incidence reflection factor, HI is 

the transfer function for the incident wave, and HR is the transfer function for the reflection 

wave. The transfer functions HI and HR are defined as follows: 

( )ixxk
I eH 210 −⋅−=          (6) 

( )ixxk
R eH 210 −⋅=       (7) 

The sound absorption coefficient α is then defined by Equation 8: 
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222 11 ir rrr −−=−=α     (8) 

The frequency dependencies of the sound absorption coefficient are experimentally measured 

using a two-microphone impedance tube. They can subsequently be used for determining the 

noise reduction coefficient, the speed of sound and the longitudinal elastic coefficient of the 

studied powder materials.  

The noise reduction coefficient (NRC) takes into account an influence of excitation frequency 

on the sound absorption coefficient. It is defined as the arithmetical average of the sound 

absorption coefficients of a given material at the excitation frequencies 250, 500, 1000 and 

2000 Hz [20-22]: 

 
4

20001000500250 αααα +++=NRC   (9) 

The speed of sound c of elastic wave through powder beds is proportional to the primary 

absorption peak frequency fp1 as follows [22]: 

      14 pfhc=        (10) 

where h is the height of a given powder bed.  

 

2.3. Calculation of longitudinal elastic coefficient  

The longitudinal elastic coefficient K of a powder bed is similar to Young´s modulus of the 

material. It is proportional to the speed of sound of longitudinal elastic wave and is defined by 

Equation 11 [22,23]: 

( ) bpb fhcK ρρ 2
1

2 4==    , (11) 

where ρb is the bulk density of the powder bed.  

The absorption peak frequencies fp can be in general calculated according to the equation [24]: 
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    (12) 

where n is an odd integer number corresponding to the peak (1 for 1st peak, 3 for 2nd peak, and 

so on). Because the c and n are constants, the product of excitation frequency and powder 

height should also be a constant (Equation 12). 

 

3. Materials 

Muscovite mica (sample 1) (Kings Mountains, USA) and phlogopite mica (samples 2 and 3) 

Suzor type HK325 (Boucherville, Québec, Canada) were used in this study.  

 

4. Methods 

4.1.  Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was used to follow shape and size of the studied mica 

filler particles. Scanning electron microscopy images were captured on Hitachi 6600 FEG 

microscope (Japan) operating in the secondary electron mode using an accelerating voltage of 

1 kV. 

 

4.2. Thermal Analysis 

Thermogravimetry (TG) and differential thermal analysis (DTA) experiments were performed 

on simultaneous DTA-TG apparatus (Shimadzu DTG 60, Japan). Throughout the experiment, 

the sample temperature and weight-heat flow changes were continuously monitored. The 

measurements were performed at heat flow rate of 10°C/min in the static air atmosphere at the 

temperature range of 30°C to 300°C. 

 

4.3. Specific surface area and porosity analysis 
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Specific surface area measurements were made using Micromeritics TriStar 3000 surface area 

and porosity analyser (USA) combined with the nitrogen BET technique.  

 

4.4. Surface Energy Analysis (SEA) 

Inverse gas chromatography was conducted using a surface energy analyser (SEA) (Surface 

Measurement Systems, UK).  Samples were placed in 4 mm (internal diameter) columns to 

give a total surface area of approximately 0.5 m2.  The following eluent vapours were passed 

through the column: nonane, octane, hexane, heptane, dichloromethane, acetone, acetonitrile, 

ethyl acetate and ethanol. All reagents were obtained from Sigma Aldrich (USA) and were of 

analytical grade.  The injection of vapours was controlled in order to pass a set volume of 

eluent through the column to give pre-determined fractional coverage of the sample in the 

column.  Using this method, the retention time of the vapours through the particles gives an 

indication of the surface properties of the material, including the surface energy.  By 

gradually increasing the amount of vapour injected, it is possible to build up a surface 

heterogeneity plot. 

 

4.5. Powder rheology 

Powder rheology measurements were conducted on a FT4 Powder rheometer (Freeman 

Technology, UK). All experiments were performed under the ambient laboratory temperature 

of 23 °C and relative humidity of 43 %. 

 

4.6. Acoustical performance testing 

The impedance tube method for sound absorbing testing based on transfer function method 

ISO 10534-2 standard was used. The frequency dependencies of the sound absorption 

coefficient were experimentally measured using a two-microphone impedance tube (BK 
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4206) in combination with three-channel signal PULSE multi-analyser (BK 3560-B-030) and 

power amplifier (BK 2706) in the frequency range of 150-6400 Hz (Brüel & Kjær, Denmark). 

The normal incidence sound wave absorption of the tested loose powder samples of defined 

layer thickness (ranging from 2.5 to 100 mm) was determined. All experiments were 

performed under ambient laboratory conditions of 40 % relative humidity and at 22°C. 

 

Results and discussion 

As mentioned previously, inorganic nano/micro particles are used as intelligent fillers in many 

polymer based composites, as well as in the paper and dye industries [1-4,25-28]. The 

dominant factors are: particle uniformity; diameter; surface chemistry [29]; and shape, which 

influences the physical and material properties of the final product. These properties include 

mechanical strength, thermal behaviour, barrier properties, and electrical conductivity.  As 

shown in Figure 1, the mica nano/micro powders exhibit typical a plate-like planar structure. 

As observed by SEM analysis, the mica particles had a thickness of approximately 150 nm. 

The specific surface areas of the studied samples were identical (9.67 m2/g) for all materials 

under study. Due to the fact that residual captured moisture from the ambient atmosphere 

strongly affects the surface energy and powder rheological behaviour, prior to these 

experiments the water content in all samples was characterized by means of thermal analysis 

across the temperature range of 30 to 300°C. There were found no traces of any kind of free 

water molecules at the surface as well as in crystal lattice of the powders under study. As 

confirmed by previous studies, the surface chemistry of the fillers affects the contacts at the 

filler/matrix interface, which are paramount for obtaining a final composite with the desired 

mechanical properties [1,2]. The chemical composition reflects the crystal structure of the 

filler, and on a macroscopic scale it influences polarity, thus the wetting characteristics. In this 

study, as shown in Figure 2, inverse gas chromatography was used to determine the surface 
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energy [8] and to quantify the surface energy profiles and its components (polar and 

dispersive parts) as a function of surface coverage. Here a typical exponential decrease of 

total surface energy of for all studied samples was observed up to the 0.3 surface coverage 

reflecting thus relatively broad number of high energy sites in the studied materials. The 

highest energy sites were of 85 mJ/m2 total surface energy for the muscovite (sample 1), 

followed by the two phlogopite samples, sample 3 (78 mJ/m2) and sample 2 (75 mJ/m2). For 

surface coverage exceeding 30 % the total surface energy was practically constant ranging 

between 52 mJ/m2 for the sample 1 up to 57 mJ/m2 for the sample 3. As evident from the 

Figure 2, dominating was dispersive component of the surface energy as compared to the 

polar component for all studied powders thus reflecting non-polar hydrophobic character. The 

hydrophobic character of muscovite micas has been observed by AFM experiments, where the 

high adhesion observed for the interaction between the hydrophobic −CH3 tip and muscovite 

was caused by van der Waals forces and attractive hydrophobic interactions that originate 

from the inherent hydrophobicity and adventitious carbon present on the solid surface [30]. In 

the case of the polar surface energy component, the difference between the highest and the 

lowest energy sites was approximately 6 mJ/m2 showing an exponential decrease similar to 

that of the total and dispersive components. The maximum value of the polar part of the 

surface energy observed for the muscovite was approximately 15 mJ/m2. The measured 

dispersive surface energy (Figure 3), showed a characteristically relatively broad distribution 

for both the muscovite (44 mJ/m2 to 84 mJ/m2), and the phlogopite, samples 2 (46 mJ/m2 to 

76 mJ/m2) and 3 (48 mJ/m2 to 88 mJ/m2), thus reflecting relatively large number of structural 

elements which might be responsible for this behaviour. In contrast, the area increment 

occupancy for the sample 3 was approximately two times higher, reaching 1.3 % in 

comparison with the sample 1 (0.6 %) and the sample 2 (0.8 %).  
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The flow properties of bulk solids depend on many parameters, e.g. particle size distribution, 

particle shape, chemical composition of the particles, moisture content, temperature [7] as 

well as on experimental conditions [31-33]. The macroscopic powder flow behaviour was also 

investigated in this study by determining the yield locus and flow function dependencies at 

different stress levels applied on the studied samples. Results of the powder rheological 

measurements are shown in Figure 4, which presents the yield locus and Mohr´s circles of the 

tested mica powders. The results show that the muscovite exhibited easy flowing powder 

characteristics, as indicated by the observed flowability of 8.4, which is relatively close to the 

region of free flowing powders. In contrast, the flowabilities of the phlogopite samples ranged 

from 5.44 to 5.53, which are values characteristic for easy flowing powders behaviour, 

however near to the cohesive region. The unconfined yield strengths ranged from 2.54 kPa 

(sample 1) to 3.54 kPa (sample 2) and 2.89 kPa (sample 3). The angle of internal friction 

ranged from 29.3° for the sample 3 up to 35.1 and 39.9° for the sample 2 and the sample 1, 

respectively. The relevant consolidation stress, σ1, can be obtained from the major principal 

stress of the Mohr stress circle tangential to the yield locus and intersecting the point of steady 

flow. The major principle stress for all the tested powders was about 16 to 21.4 kPa. The latter 

stress circle represents the stresses in the sample at the end of the consolidation procedure 

(stress at steady state flow). It corresponds to the stress circle at the end of consolidation in 

the uniaxial compression test. The bulk density of the powders in general depends on the state 

of compaction of the bulk solid. The latter state of compaction depends on applied magnitude 

of the consolidation stress acting on the bulk solid during powder testing. Under the 

experimental conditions used in this work (preshear normal stress of 9 kPa), the observed 

samples bulk densities ranged from 0.405 g/ml for phlogopite (sample 3) to 0.451 g/ml 

(muscovite, sample 1). This shows that the cohesive character of the phlogopite triggers a less 

compact solid-like structure than the muscovite. This conclusion is in excellent agreement 
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with aeration data shown in Figure 5. The aeration ratio was found to range from 21.8 for the 

phlogopite (sample 2) to 38.4 for the muscovite (sample 1), whereas the aerated energy varied 

from 4.18 mJ (sample 3) to 7.49 mJ (sample 1). The aeration data indicated that the muscovite 

showed the lowest cohesion of all the samples tested. However, all three mica powders were 

sensitive to aeration and become fluidised. The phlogopite powders exhibited complete 

fluidisation at 2 mm/s air velocity, with basic flowability energy approximately 93 mJ. This is 

in contrast to the muscovite, which exhibited complete fluidisation at 6 mm/s air velocity, 

with a basic flowability energy of 288 mJ, thus supporting the conclusion of low cohesive 

powder character.  

Sound damping properties of the materials are in general strongly affected by the porosity, 

shape of the pores and friction coefficient of the incident air in the pores, the material 

mechanical stiffness as well as on the conditions of the applied dynamic acoustic field as 

given by the frequency and amplitude of the vibration field [16]. This is why, to some extent, 

the cohesive character of the powder samples would affect their acoustic performance. Due to 

the relative complexity of the sound wave interaction with the incident material surface layer 

as well as penetrated material inner structure, factors such as incident sound wave angle and 

sound wave frequency would also influence final acoustic impedance frequency dependency. 

Results of our normal incidence sound absorption experiments are shown in Figure 6 and are 

summarised in Table 1.  In general, the sound absorption efficiency increases with increasing 

material thickness, in this case with height of the loose powder bed. Figure 6 shows the data 

for phlogopite (sample 2). Observed frequency dependencies of the normal incident sound 

absorption coefficient were characteristic with the appearance of the primary absorption peak 

at a characteristic frequency fp1. The latter primary absorption peak frequency was shifted 

toward decreasing frequency with increasing powder bed height (Figure 7), i.e. for the bed 

height of 10 mm the frequency fp1 was located at 648 Hz having the sound absorption 
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coefficient 0.59 (sample 2). For 100 mm sample 2 powder bed height the frequency fp1 was 

located at 224 Hz having the sound absorption coefficient 0.53. No primary sound absorption 

peak was observed below 200 Hz frequency for any of the samples studied. Homogeneous 

porous materials containing interconnecting pores exhibit two types of sound absorption 

mechanisms: the first type is due to the air friction passing through the powder bed pores, the 

second one is due to the mechanical vibration of the solid structure of the powder bed [22]. 

The sound absorption coefficient of the first type is low at low frequencies and high at high 

frequencies. In contrary to the latter frequency behaviour the second type of sound absorption 

is giving rise to a high absorption coefficient at the resonant frequencies of the solid structure, 

in our case when the size of the pores becomes relatively small and resistance to air flow is 

high. As shown in Figure 6, the observed sound absorption coefficient frequency 

dependencies exhibited primary as well as secondary (and higher) sound absorption peaks for 

all materials. Calculated frequencies for all samples under study having minimum powder bed 

height of 7.5 mm up to 30 mm exhibited the ratio of secondary absorption peak 

frequency/primary peak frequency of approximately 3. This value is in excellent agreement 

also with the Equation 12. This confirmed that the latter resonant vibration modes are 

considered to be the one-end fixed longitudinal modes [22]. The appearance of the primary 

sound absorption peaks at the same frequency can be confirmed, as shown in Figure 7. This 

result confirms that the product of frequency and powder bed height plotted against the sound 

absorption coefficient dependency was constant, irrespective of the specimen powder bed 

height according to Equation 12 [24]. This behaviour is consistent with the fact that c and n 

were constants. Based on the acoustic measurements the worst sound absorption performance 

was found for the muscovite across a substantial part of the measured frequency range. This 

conclusion is in excellent agreement with the observed the lowest magnitude of the noise 

reduction coefficient NRC (Equation 9) for all tested powder bed heights (see Table 1, data 
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for muscovite). In the case of powder bed height in the range of 2.5 mm up to  30 mm the best 

sound absorbing properties were found for the sample 2, in the case of the h exceeding 50 mm 

the best noise damping properties were observed for the sample 3. To confirm this, 

calculations of the longitudinal elastic coefficient K of the powder bed according to Equation 

11 were performed [22]. As expected, due to the densest structure of the powder bed found 

for the sample 1 (0.451 g/ml observed bulk density from powder rheology), the worst acoustic 

performance was found accompanied by the highest elastic coefficient magnitude of 3.37 

MPa (for h = 100 mm). The lowest K was found for the sample 3 of 3.02 MPa (see Table 1). 

This result is in excellent agreement with the observed lowest value of the angle of internal 

friction of 29.3° for the sample 3 which was characteristic for cohesive powders. Calculated 

speed of sound (eq. (10)) of the elastic wave propagated through the powder bed (of h = 30 

mm) was highest for sample 1 (c = 33.6 m/s) due to the most dense structure in comparison 

with the more aerated porous structure of the sample 2 (c = 32.6 m/s) and the sample 3 (c = 

32.6 m/s) powders. 

 

Conclusions 

It was found in this study that the combination of the results of the surface energy analysis 

performed by iGC, correlated with the powder rheology testing, can be used for the evaluation 

of the acoustical performance of the studied powder materials. It was found that the 

application of a combination of the two mode dissipation mechanisms of sound wave 

propagation in the powder bed is correct, the first based on sound energy dissipation due to 

the internal friction of the sound wave in the porous solid structure of the solid in combination 

with the sound absorption due to the vibration of the solid structure. Based on surface energy 

analysis, the dispersive component of the surface energy was the dominant component for all 

studied powders, thus reflecting non-polar hydrophobic character of the materials tested. In 
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the case of the polar surface energy component the difference between the highest and the 

lowest energy sites was only about 6 mJ/m2. Maximum values of the polar part of the surface 

energy observed for muscovite was approximately 15 mJ/m2. There was found more cohesive 

character of the phlogopite compared to the muscovite, which triggers a less compact solid 

like structure in the case of the sample 1. Mechanical testing of powder beds was performed 

by means of powder rheology. The determined yield locus and Mohr´s circles indicated that 

the muscovite exhibited more free flowing powder characteristics, whereas the phlogopite 

samples exhibited more cohesive powder flow behaviour. This conclusion was confirmed by 

aeration tests. All mica powders were sensitive to aeration and became fluidised. Observed 

frequency dependencies of the normal incident sound absorption coefficient were 

characteristic with appearance of the primary absorption peak at characteristic frequency fp1. 

The latter primary absorption peak frequency was shifted toward decreasing frequency with 

increasing powder bed height. Based on the acoustical measurements the worst sound 

absorption performance was found for the muscovite in a substantial part of the measured 

frequency range. This conclusion was in excellent agreement with the observed the lowest 

magnitude of the noise reduction coefficient NRC for all tested powder bed heights. 

Calculation of the longitudinal elastic coefficient K of each powder bed was performed. The 

worst acoustic performance was found for the muscovite, which corresponded to the observed 

highest elastic coefficient of 3.37 MPa (for h = 100 mm). The lowest K was found to be 3.02 

MPa (phlogopite sample 3), in excellent agreement with powder rheology measurements. 
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Figure chapter 

Figure 1. SEM images of studied mica powders: A) sample 1, B) sample 2, and C) sample 3. 

Figure 2. Surface energy and its component profiles of mica powders: circle – sample 1, 

triangle – sample 2, crosshair – sample 3, black– dispersive component of the surface energy 

(SFE), red – polar component of SFE, green colour – total SFE. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article). 

Figure 3. Dispersive surface energy distribution of studied mica powder: sample 1 (circle), 

sample 2 (triangle) and sample 3 (crosshair). 

Figure 4. Yield locus and Mohr´s circles of studied mica powders (measured at 24 °C).  

Figure 5. Aeration test results for studied mica powders (measured at 24 °C). 

Figure 6. Sound absorption coefficient frequency dependence of the mica powder sample 2 as 

observed for different loose unconsolidated powder layer thickness given in millimetres (see 

the insert legend). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article). 

Figure 7. Dependence of the primary absorption peak frequency (fp1) vs. loose powder layer 

thickness of the studied mica powders: sample 1 (circle), sample 2 (triangle) and sample 3 

(crosshair). Inset: Illustration for sample 2 of the sound absorption coefficient (α) dependence 

on product of frequency × thickness (f × h) being constant irrespective of specimen thickness. 

Inserted inset legend: loose powder thickness in millimetres. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article). 
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Table chapter 

 

Table 1. Results of the calculated and measured acoustical and mechanical quantities of 

studied mica powders. 
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Table 1. Results of the calculated and measured acoustical and mechanical quantities of studied mica powders. 

Sample 
No. 

Quantity 
Material height h [mm] 

2.5 5 7.5 10 12.5 15 20 30 40 50 100 

1 

αmax [−] 0.440 0.689 0.499 0.558 0.506 0.534 0.518 0.636 0.618 0.637 0.573 

fαmax [Hz] 6352 6400 6182 6184 608 464 344 6400 240 240 5736 

NRC [−] 0.054 0.166 0.198 0.233 0.237 0.235 0.222 0.227 0.318 0.370 0.261 

fp1 [Hz] − 1360 1064 744 608 464 344 280 240 240 216 

K [MPa] − 0.334 0.460 0.399 0.417 0.350 0.342 0.509 0.665 1.039 3.367 

c [m⋅s-1] − 27.2 31.9 29.8 30.4 27.8 27.5 33.6 38.4 48.0 86.4 

2 

αmax [−] 0.495 0.714 0.593 0.585 0.655 0.784 0.727 0.766 0.633 0.619 0.672 

fαmax [Hz] 6392 5560 5848 648 6368 6400 6400 6400 5688 240 6400 

NRC [−] 0.108 0.196 0.219 0.238 0.273 0.286 0.269 0.294 0.369 0.389 0.312 

fp1 [Hz] − − 1128 648 560 472 352 272 248 240 224 

K [MPa] − − 0.472 0.277 0.323 0.330 0.327 0.439 0.649 0.949 3.308 

c [m⋅s-1] − − 33.8 25.9 28.0 28.3 28.2 32.6 39.7 48.0 89.6 

3 

αmax [−] 0.509 0.571 0.588 0.619 0.612 0.653 0.754 0.716 0.658 0.809 0.787 

fαmax [Hz] 6392 6392 936 680 544 6400 6400 6400 6344 6400 6400 

NRC [−] 0.077 0.174 0.216 0.200 0.274 0.269 0.265 0.296 0.352 0.397 0.290 

fp1 [Hz] − 1680 936 680 544 464 352 272 264 248 216 

K [MPa] − 0.457 0.319 0.300 0.300 0.314 0.321 0.431 0.723 0.996 3.023 

c [m⋅s-1] − 33.6 28.1 27.2 27.2 27.8 28.2 32.6 42.2 49.6 86.4 
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Figure 1. SEM images of studied mica powders: A) sample 1, B) sample 2, and C) sample 3. 
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Figure 2. Surface energy and its component profiles of mica powders: circle – sample 1, 

triangle – sample 2, crosshair – sample 3, black– dispersive component of the surface energy 

(SFE), red – polar component of SFE, green colour – total SFE. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article). 
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Figure 3. Dispersive surface energy distribution of studied mica powder: sample 1 (circle), 

sample 2 (triangle) and sample 3 (crosshair). 
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Figure 4. Yield locus and Mohr´s circles of studied mica powders (measured at 24 °C).  
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Figure 5. Aeration test results for studied mica powders (measured at 24 °C).  
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Figure 6. Sound absorption coefficient frequency dependence of the mica powder sample 2 as 

observed for different loose unconsolidated powder layer thickness given in millimetres (see 

the insert legend). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article). 
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Figure 7. Dependence of the primary absorption peak frequency (fp1) vs. loose powder layer 

thickness of the studied mica powders: sample 1 (circle), sample 2 (triangle) and sample 3 

(crosshair). Inset: Illustration for sample 2 of the sound absorption coefficient (α) dependence 

on product of frequency × thickness (f × h) being constant irrespective of specimen thickness. 

Inserted inset legend: loose powder thickness in millimetres. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article). 
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Highlights 

 

• Correlation of surface energy analysis and powder rheology with the acoustical 

performance of the studied mica powders was presented.  

• There was determined yield locus and Mohr´s circles of the mica powders.  

• The worst sound absorption performance was found for the highest packing density 

material.  

 


