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ABSTRACT  

The overall stability (thermo-oxidation, sedimentation) of the MR suspensions is a crucial 

problem decreasing their potential applicability in the real life. In this study the unique 

functional coating of carbonyl iron (CI) particles with ZnO structures was presented in order 

to develop new MR suspension based on the core-shell ZnO/CI urchin-like dispersed 

particles. The two-step synthesis provides the suitable core-shell particles with improved 

sedimentation and also thermo-oxidation stability. Moreover, due to the enhanced 

sedimentation stability core-shell based suspensions exhibit higher values of the yield stress 

than those of bare CI based suspensions at 20 wt. % particle concentration. The suspension 

with 60 wt. % particle concentration reaches value of the yield stress around 2.2 kPa at 272 

mT. The excellent MR efficiency of the core-shell ZnO/CI based suspension at elevated 

temperatures was observed. Finally, the dimorphic particle based suspension was prepared 

when ratio between the carbonyl iron and core-shell urchin-like particles was 1:1. The highest 

yield stress was obtained in the case of dimorphic particles-based suspension due to good 

magnetic properties of bare carbonyl iron and mechanical gripping between core-shell 

ZnO/CI urchin-like particles. 

 

KEYWORDS: Core-shell, inorganic-inorganic, urchin-like, ZnO, carbonyl iron, 

magnetorheology, thermal stability, sedimentation stability. 
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1. Introduction 

Magnetorheological fluids (MRF) represent a class of smart matters consisting of magnetic 

particles and liquid medium, whose rheological characteristics show fast and reversible 

transition from a liquid-like to solid-like state when they are exposed to external magnetic 

fields [1-5]. In the absence of a magnetic field, the particles are randomly dispersed in the 

carrier liquid and MR fluid exhibits Newtonian-like behaviour. After applying magnetic field, 

the dispersed particles are magnetized and the interaction between the induced dipoles cause 

the particles form internal field-induced structures, parallel to the applied field [6-11]. 

Development of such structures is resulting in the increase of the suspension viscosity and 

transition from Newtonian to pseudoplastic behaviour appears with certain level of the yield 

stress [12-15].  

There is a wide range of technological applications that benefit from materials able to provide 

rapid-response interfaces between electronic controls and mechanical systems, including 

rotary brakes, dampers, shock absorbers, torque transducers, etc. [16-19]. Besides established 

commercial use of MR fluids in automotive industry, developments might be expected in field 

of civil and aerospace engineering especially [20, 21]. Moreover, presently the new medical 

applications of MR fluids in the cancer treatment by hyperthermia method started to be 

developed [22]. 

In spite of the essential advantages of such materials, there are still two main limitations 

inhibiting of their impulsive expansion to the common real-life applications. The first one is 

the poor stability against sedimentation, due to the considerable difference between solid 

particles and liquid medium densities. There are several options how to improve such 

behaviour i.e. using thixotropic agents, surfactants [23] or utilizing bidispersed or dimorphic 

particle mixtures [24, 25]. Also employing of the core-shell particles based on inorganic-

polymer [26-33] or inorganic-MWCNT [34-36] as well as inorganic-inorganic coatings 

enhance the mentioned sedimentation stability. The second disadvantage is insufficient 

thermal stability of the iron particles, whose oxidation after they are exposed to the elevated 

temperature considerably decreases the magnetorheological properties [37]. Thus, the 

modification of the particles especially, using various polymers [38-40] is usually applied. 

In our preceding study [41] the coating of the carbonyl iron particles with low molecular 

weight substance cholesteryl chloroformate was performed. Such coating provided particles 
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with slightly enhanced thermooxidation stability and moderately increased sedimentation 

stability of their silicone oil suspension. 

Therefore, this study is concentrated on the preparation of the core-shell inorganic-inorganic 

ZnO urchin-like coated carbonyl iron microparticles via two-step synthesis. The successful 

synthesis was confirmed by scanning electron microscopy (SEM), energy dispersive X-ray 

spectroscopy (EDX) and X-ray diffraction spectroscopy (XRD) techniques. Rheological 

properties in the presence as well as in the absence of the external magnetic field of both bare 

carbonyl iron and the urchin-like ZnO/CI core-shell particles-based suspensions were 

investigated. Finally, the crucial parameters such as thermooxidation and long-term 

sedimentation stability were also evaluated  

2. Materials and Methods 

2.1 Materials 

Carbonyl iron microparticles (SL grade, α -iron content >99.5 %, BASF, Germany), zinc 

acetate dihydrate Zn(CH3COO)2.2H2O (ZAD),  zinc nitrate hexahydrate Zn(NO3)2.6H2O and 

hexamethylenetetramine (CH2)6N4 (HMTA) were all purchased from PENTA (Czech 

Republic) and used as received without further purification. Demineralized water with 

conductivity about 10
-7

 Scm
-1

 and ethanol were used throughout experiments. 

2.2 Synthesis of core-shell urchin-like ZnO/CI particles 

ZnO/CI composite particles were prepared in two steps. The first step involved “seeding” of 

CI particles with ZnO nanocrystals via modified procedure proposed originally by Spanhel 

[42]. Briefly, 0.005 M solution obtained by dissolving 0.165 g of ZAD in 150 ml of ethanol 

was added to the flask with 1 g of CI particles and sonicated for 2 minutes. After that, the 

flask was placed on the hot plate and heated at 80 °C. The dispersion was agitated 

mechanically by stirrer speed set at 900 rpm for 2 h before being left to cool down to the room 

temperature naturally. Than, the dispersion was washed several times with ethanol, filtered, 

and collected particles were dried at 60 °C.  

After seeding procedure, CIseed particles coated with ZnO nanocrystals were used as a 

substrate for the hydrothermal growth of ZnO nanorods. The growth was carried out in the 

mixture of aqueous solution of zinc nitrate hexahydrate (0.05 M) and HMTA (0.05 M) at 

80 °C under mechanical stirring with agitator speed set up 650 rpm for 2 h. After cooling, the 
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particles were washed thoroughly with distilled water, filtered and dried at 60 °C. Prepared 

CI/ZnO particles were characterized and used as a dispersed phase for magnetorheological 

suspensions. 

2.3 Particles characterization 

Crystalline phase of particles was characterized by the powder X-ray diffractometer X´Pert 

PRO X-ray (PANalytical, The Netherlands) with a Cu-Kα X-ray source (λ = 1.5418 Å) in the 

diffraction angle range 5-85° 2θ. The morphology was examined by scanning electron 

microscope Vega II/LMU (Tescan, Czech Republic) equipped with EDX-System OXFORD 

INCA Energy 200 (OXFORD INSTRUMENTS, UK) 

The magnetic properties were studied using a vibrating sample magnetometer VSM 7400 

(Lake Shore, United States). Thermogravimetric analysis (TGA) was carried out by the 

thermogravimeter Q500 (TA instruments, United States) in the temperature range from 25 to 

800°C at a heating rate 20°C min
-1

 in flowing air (30 sccm). 

 

 

 

2.4 Suspension preparation and rheological measurements 

ZnO/CI core-shell particles were suspended in silicone oil (Lukosiol M 200, viscosity 

ηc = 194 mPa s, density dc = 0.970 g cm
–3

, relative permittivity ε´ = 2.89, loss factor tan 

δ = 0.0001, Chemical Works Kolín, Czech Republic) with 20, 40, and 60 wt. % particle 

concentrations. The suspensions were mechanically stirred before each measurement. The 

rheological properties under an external magnetic fields in the range 0–300 mT were 

investigated using a rotational rheometer Physica MCR502 (Anton Paar GmbH, Austria) 

equipped with a Physica MRD 170/1T magneto-cell. The true magnetic flux density was 

measured using a Hall probe. Rheological measurements were performed at temperature 25, 

45, 65, 85 and 105 °C. 

2.5 Particle sedimentation 

The silicone oil suspensions containing 40 wt. % of both bare CI and ZnO/CI urchin-like 

particles were firstly mechanically stirred and then placed to the vials and sedimentation test 

was performed. The sedimentation ratio, as a ratio between the height of the suspension in the 
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vial at the beginning of test and the height of the particle rich phase after certain time period, 

was evaluated as a measure of sedimentation stability within the 30 hours. 

 

3. Results and Discussion 

3.1. XRD characterization  

Powder XRD patterns of bare CI, CI seed, and CI/ZnO composites are shown in Figure 1. For 

CI particles, peaks observed at 2θ = 44.6°, 65°, and 82.3° (marked by diamonds) correspond 

to (110), (200), and (211) reflections of iron with the cubic structure (ICDD PDF-2 entry 01-

087-0722). The diffraction patterns of seeded CI sample seem to remain unchanged 

comparing to diffractogram of bare CI and no peaks corresponding to ZnO crystal phase were 

detected. On the other hand the presence of seeds on the CI particle surface was further 

confirmed by both SEM as well as by EDX. Diffraction patterns of CI/ZnO composite contain 

peaks related to iron cubic structure peaks at 2θ = 44.6°, 65°, and 82.3° and as expected also 

peaks located at 2θ = 31.7°, 34.3°, 36.1°, 47.4°, 56.5°, 62.8°, 67.8° and 68.9° (marked by 

stars) which correspond well to hexagonal wurtzite crystal structure of ZnO (ICDD PDF-2 

entry 01-079-0207). 
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Figure 1: XRD patterns of particles, where peaks representing CI are marked as (diamonds) 

and peaks representing ZnO are marked as (stars). 

3.2. SEM analysis  

Scanning electron micrographs of bare CI powder are shown in Figure 2(a,b). It can be seen 

that particles are of the spherical shape with some bigger particles about 9 µm in diameter, but 

the most of them being in the range of 1–4 µm. Figure 2(c,d) shows morphology of CI 

particles after seeding (seeded CI) in ZAD ethanol solution. Nanoparticles with the size of 

about 150 nm are clearly seen in the enlarged image (Figure 2d) although no ZnO diffraction 

pattern was detected by XRD measurement. Therefore, energy dispersive X-ray (EDX) 
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elemental microanalysis was performed to confirm the presence of zinc and oxygen. Zinc as 

well as carbon traces in the material were clearly revealed besides the strong signal of iron 

dominating the whole spectrum in Figure 3. However, oxygen’s Kα emission can be only 

found hidden in the low energy shoulder of the broad iron’s L series emission peak. Precise 

quantification of zinc and oxygen mass ratio cannot be made due to the aforementioned poor 

spectral line resolution and because of the generally low sensitivity and semi-quantitativeness 

of the used EDX technique. The product of hydrothermal growth of ZnO on seeded CI 

particles is shown in Figure 2(e,f). Finally ZnO microrods are growing radially onto CI 

particles surface forming urchin-like structure of ZnO decorated spherical CI particles. The 

ZnO microrods are about 100–200 nm in diameter and 1–1.5 µm in length. It should be noted 

that the diameter of microrods is approximately the same as dimensions of seeded ZnO 

nanocrystals. However, the microrods are crowded closely together much more than it can be 

expected according to the surface coverage density of nanoseeds observed in Fig. 2(c,d). It 

seems that the seeded particles are multifaceted centers of branched growth of single rods.  
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Figure 2: SEM micrographs of bare CI (a, b), ZnO seeded CI (c, d), ZnO/CI urchin-like (e, f) 

particles at various magnifications. 

 

 

Figure 3: EDX spectrum of a surface spot on seeded CI particle, magnified details in inset 

graph: 1 – C Kα line, 2 – O K Kα line, 3 and 4 – Fe L lines, 5 – Zn L lines, the inset image 

shows the spot on the CI particle, where the point spectrum was collected from.  
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3.3 Magnetic properties 

Magnetostatic properties were measured by vibrating sample magnetometry and the resulting 

hysteresis loops of bare CI, ZnO seeded CI and CI/ZnO particles are shown in Figure 4. All 

samples exhibit a soft magnetic behavior with negligible remanence and coercivity. Whereas 

the values of remanence and coercivity remained almost unchanged, the saturation 

magnetization (Ms) decreased significantly from 182.6 emu g
-1

 for bare CI to 129 emu g
-1

 for 

CI/ZnO particles. The decrease in saturation magnetization can be reasonably attributed to 

diluting contribution of non-magnetic ZnO in sampling volume. However, the saturation 

magnetization value of ZN seeded CI sample (159.5 emu g
-1

) is significantly lower than that 

of bare CI (182.6 emu g
-1

) although the ZnO fraction is negligible. Another mechanism than 

dilution but related with the surface thin semiconducting film must be active in such 

phenomena. Magnetic domain wall pinning can be employed for its explanation similarly as it 

was already demonstrated being crucial for polyaniline thin film covered core-shell CI 

particles. 
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Figure 4: VSM spectra of the bare CI (dashed line), ZnO seeded CI (solid line) and ZnO/CI 

urchin-like (dash dot line) particles. 

3.4 Thermo-oxidation and sedimentation stability 

Thermogravimetric analysis under dynamic air atmosphere is an indicative experiment of 

thermo-oxidative stability. Obtained results are shown in Figure 5. The dense surface 

coverage of reactive and easily corrodible CI particles by semiconducting microrods enhanced 

the stability of CI towards oxidation even at elevated temperatures. First, the total mass 

increase due to oxidation was lower for CI/ZnO than for bare CI particles over the same 

temperature range. In next, the onset temperature as well as the maximum rate of oxidation is 
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shifted of more than about 200°C towards higher temperature for CI/ZnO which can be 

considered as a significant effect.  

 

 

Figure 5: TGA curves and their derivatives of bare CI (dash dot line) and ZnO/CI urchine-like 

(solid line) particles. 

Sedimentation stability is very important factor influencing the magnetorheological (MR) 

activity of the suspensions. Systems with poor long-term behaviour also exhibit reduced MR 

efficiency, due to fast particle settling. Such systems are not able to further create internal 
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structures of suitable toughness after application of the external field and their application in 

real-life application is therefore limited. Thus the sedimentation ratio as a parameter 

representing the stability of the suspension in the time was investigated. As can be seen in the 

Figure 6 the sedimentation ratio of suspension containing bare CI particles is nearly on 40 % 

of the maxima after 5 hours while ZnO/CI urchin-like are on the 60 %. Furthermore, within 

the another 25 hours of the test suspensions exhibit nearly same behaviour and the values of 

the sedimentation ration was fixed on the 30 % for bare CI-based suspension and 50 % for 

ZnO/CI urchin-like based suspensions, probably due to the partial decreased density of the 

core-shell particles and also because of the extraordinary urchin-like shape contributing to the 

enhanced sedimentation stability. 

Page 15 of 40 RSC Advances



 

Figure 6: Sedimentation stability of the bare CI particle suspension measuring jug A (�) and 

ZnO/CI urchin-like particle suspension measuring jug B (�). 

3.5 Magnetorheological behaviour 

With the help of the steady shear rheological experiments, the magnetorheological behaviour 

of the both suspensions based on bare CI particles and suspensions based on ZnO/CI core-

shell urchin-like ones in the absence as well as in the presence of the various magnetic flux 

densities was investigated. As can be seen in the Figure 7 both samples exhibit nearly 

Newtonian behaviour in the absence of the external field. However, after application of the 

external field the shear stresses increase with increasing magnetic flux density (Figure 7a) for 

suspension based on bare CI particles. Values of the yield stress represented by the presence 
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of the internal structures are not as high as would be expected for the material with such large 

magnetization saturation. This behaviour is probably connected with the very poor 

sedimentation stability of the suspension, as was discussed in the previous chapter and 

particles are not able to develop internal structures with appropriate toughness even at high 

magnetic flux densities. On the other hand, ZnO/CI core-shell urchin-like particles based 

suspensions, exhibit higher values of the yield stress than that of bare ones, even the 

magnetization saturation of ZnO/CI core-shell particles was considerably lower because of 

presence of coating layer. This behaviour is connected to enhanced sedimentation stability 

and suspension containing only 20 wt. % particles reaches the value of the yield stress around 

0.5 kPa at 272 mT. 

Therefore the further investigation was concentrated only on the core-shell particles based 

suspensions. Figure 8 represents the behaviour of the suspensions of different particle weight 

fractions (20, 40 and 60) under various magnetic flux densities. Yield stress of all suspensions 

increases with increasing magnetic flux density and also with particle weight fraction. To 

properly investigate the impact of the particle concentration on the development of the 

internal structures the data of the yield stress were fit with power-law relation τy ≈ B
a
 and 

values of the slope are summarized in the Table 1. As was observed and is usually stated in 

the literature [34, 43, 44] at low magnetic flux densities the behaviour of suspensions follow 

dipole mechanism where yield stress, τy varies rather with B
2
 while at the high magnetic flux 

densities behaviour of suspensions exhibit local magnetization saturation of the particles and 

development of the internal structures follows saturation mechanism, where τy further varies 

only with B
1.5

. In this case vectors of the magnetization are saturated and ability of the 

suspensions to develop considerable tougher internal structures with increased magnetic flux 

densities is not that high as is at lower flux densities. Finally, it can be concluded that 

suspension consisted of 60 wt. % of ZnO/CI core-shell particles reaches the values of the 

yield stress nearly around 2.2 kPa at 272 mT. Moreover, critical magnetic flux density (Bc), is 

shifted towards higher values of B and suspensions with higher particle concentration need 

higher magnetic flux density to became magnetically saturated Such values are very 

promising for the utilizing of these suspensions in the real-life applications. 
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Figure 7: Dependence of the shear stress, τ, on the shear rate, g, for suspensions of 20 wt. % 

of bare CI particles (a) and ZnO/CI urchin-like particles (b) at various magnetic flux densities, 

B (mT): (�, ⊳) 0, (�, ) 45, (�, �) 132, (�, �) 272. 
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Figure 8: Dependence of the yield stress, τy, on the magnetic flux density, B, for suspensions 

of different particle weight fractions (wt. %): (�) 20, () 40, (�) 60. Lines represent the 

power law model fit of the data for low (solid) and high (dashed) magnetic flux densities. 
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Table 1: Values of the slope for fitting of data with power-law relation at various magnetic 

flux densities. 

 

Particle concentration [wt. %] 

 

20 40 60 

 

Low magnetic flux densities 

 

1.90 1.84 1.79 

 

High magnetic flux densities 

 

1.24 1.36 1.52 

 

In applications, the suspensions are usually operating at elevated temperatures. Thus the 

rheological investigation was performed in the temperature range from 25 to 105°C. For 

comparison of obtained results MR efficiency e = (ηΕ-η0)/η0 rather than absolute values of the 

yield stresses was selected (Figure 9). The ηΕ represents the viscosity in the presence of the 

external magnetic field at low shear rate g= 1 s
-1

, while η0 is the viscosity in the absence of 

the external field at the same shear rate value. There are two reasons of MR efficiency e 

enhancement at elevated temperatures. In the absence of the external field, viscosity of 

suspensions η0 decrease with increasing temperature. In the presence of the external field, 

magneto-attractive forces between particles are enhanced at elevated temperature and 

viscosity ηΕ  rises. Therefore, the MR efficiency e increases with increasing temperature and 

with increasing magnetic flux density. 
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Figure 9: Dependence of the MR efficiency, e, on the magnetic flux density, B, for 

suspensions of 60 wt.% of core-shell ZnO/CI particles, at various temperatures T (°C): (�) 

25, (�) 45, () 65, (�) 85, (�) 105. 

In order to prepare suspensions with improved MR behaviour the bare carbonyl iron particles 

were mixed with core-shell ZnO/CI urchin-like particles in the ratio 1:1 and silicone oil and 

the suspension with 20 wt. % of dimorphic particles was obtained. As can be seen in the 

Figure 10, in the absence of the external electric field strength all suspensions exhibit nearly 

Newtonian behaviour, the lowest value of viscosity was obtained for bare CI particle-based 

suspension. Core-shell ZnO/CI particle-based suspensions exhibit higher values of the shear 

stress due to the ZnO coating of CI which results in enhanced mechanical gripping between 

particles. In the case of dimorphic particle-based suspension, the dimorphic suspension 
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character, when bare carbonyl iron particles can fill free space between the core-shell ZnO/CI 

particles, contributing to the enhanced field-off values of the shear stress. Furthermore, after 

application of the external magnetic field, the suspension including dimorphic based particles 

exhibits the highest yield stress in comparison to suspensions consisting of both individual 

components. This behaviour is probably caused due to the synergism effect coming from the 

good magnetic properties of bare carbonyl iron and mechanical gripping of core-shell ZnO/CI 

urchin-like particles. 
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Figure 10: Dependence of the shear stress, τ, on the shear rate, g, for suspensions of 20 wt. % 

of (�, �)  bare CI particles, (�, ⊳) ZnO/CI urchin-like particles and (�, ) dimorphic 

particles at 0 mT (b) and (a) 272 mT. 

 

4. Conclusion 

 

A novel two-step synthesis of the core-shell ZnO/CI urchin-like particles was presented. 

The magnetic properties were shielded by small amount on the ZnO coating on the surface of 

the CI particles. Furthermore, the thermo-oxidation as well as sedimentation stability were 

enhanced in case of core-shell based silicone oil suspensions. The rheological investigation 

also confirmed that core-shell particles based suspensions were able to develop considerable 

tougher internal structures at 20 wt. % particles concentration than that of bare CI based ones. 

With increasing core-shell particle concentration in suspension, the yield stress increases and 

reached values around 2.2 kPa at 272 mT. Furthermore, the critical magnetic flux density (Bc) 

increases with increasing particle concentration therefore particles need higher B to be 

magnetically saturated. Finally the suspension based on dimorphic particles was prepared and 

due to the good magnetization saturation of bare carbonyl iron particles and mechanical 

gripping of the core-shell ZnO/CI urchin-like particles provides system with highest yield 

stress in comparison to the both individual components. 
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Figure captions 

 
Figure 1: XRD patterns of particles, where peaks representing CI are marked as (diamonds) 

and peaks representing ZnO are marked as (stars). 

Figure 2: SEM micrographs of bare CI (a, b), ZnO seeded CI (c, d), ZnO/CI urchin-like (e, f) 

particles at various magnifications. 

Figure 3: EDX spectrum of a surface spot on seeded CI particle, magnified details in inset 

graph: 1 – C Kα line, 2 – O K Kα line, 3 and 4 – Fe L lines, 5 – Zn L lines, the inset image 

shows the spot on the CI particle, where the point spectrum was collected from.  

Figure 4: VSM spectra of the bare CI (dashed line), ZnO seeded CI (solid line) and ZnO/CI 

urchin-like (dash dot line) particles. 

Figure 5: TGA curves and their derivatives of bare CI (dash dot line) and ZnO/CI urchine-like 

(solid line) particles. 

Figure 6: Sedimentation stability of the bare CI particle suspension measuring jug A (�) and 

ZnO/CI urchin-like particle suspension measuring jug B (�). 

Figure 7: Dependence of the shear stress, τ, on the shear rate, g, for suspensions of 20 wt. % 

of bare CI particles (a) and ZnO/CI urchin-like particles (b) at various magnetic flux densities, 

B (mT): (�, ⊳) 0, (�, ) 45, (�, �) 132, (�, �) 272. 
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Figure 8: Dependence of the yield stress, τy, on the magnetic flux density, B, for suspensions 

of different particle weight fractions (wt. %): (�) 20, () 40, (�) 60. Lines represent the 

power law model fit of the data for low (solid) and high (dashed) magnetic flux densities. 

Figure 9: Dependence of the MR efficiency, e, on the magnetic flux density, B, for 

suspensions of 60 wt.% of core-shell ZnO/CI particles, at various temperatures T (°C): (�) 

25, (�) 45, () 65, (�) 85, (�) 105. 

Figure 10: Dependence of the shear stress, τ, on the shear rate, g, for suspensions of 20 wt. % 

of (�, �)  bare CI particles, (�, ⊳) ZnO/CI urchin-like particles and (�, ) dimorphic 

particles at 0 mT (b) and (a) 272 mT. 
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Table 1: Values of the slope for fitting of data with power-law relation at various magnetic 

flux densities. 

 

Particle concentration [wt. %] 

 

20 40 60 

 

Low magnetic flux densities 

 

1.90 1.84 1.79 

 

High magnetic flux densities 

 

1.24 1.36 1.52 
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