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Abstract. An inherent part of evolutionary algorithms, that are based on
Darwin theory of evolution and Mendel theory of genetic heritage, are random
processes. In this participation, we discuss whether are random processes
really needed in evolutionary algorithms. We use n periodic deterministic
processes instead of random number generators and compare performance of
evolutionary algorithms powered by those processes and by pseudo-random
number generators. Deterministic processes used in this participation are
based on deterministic chaos and are used to generate periodical series with
different length. Results presented here are numerical demonstration rather
than mathematical proofs. We propose that a certain class of deterministic
processes can be used instead of random number generators without lowering
of evolutionary algorithms performance.
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1 Introduction

The term “chaos” covers a rather broad class of phenomena whose behavior
may seem erratic, chaotic at first glance. Often, this term is used to denote
phenomena which are of a purely stochastic nature, such as the motion of
molecules in a vessel with gas and the like. The discovery of the phenomenon
of deterministic chaos brought about the need to identify manifestations of
this phenomenon also in experimental data. Deterministically chaotic systems
are necessarily nonlinear, and conventional statistical procedures, which are
mostly linear, are insufficient for their analysis. If the output of a deter-
ministically chaotic system is subjected to linear methods, such signals will
appear as the result of a random process. Examples include the Fourier spec-
tral analysis, which will disclose nonzero amplitudes at all frequencies in a
chaotic system, and so chaos can be easily mistaken for random noise. Till
now, chaos was observed in many of various systems (including evolutionary
one) and in the last few years is also used to replace pseudo-number gener-
ators (PRGNs) in evolutionary algorithms (EAs). Lets mention for example
research papers like [1] (a comprehensive overview of mutual intersection be-
tween EAs and chaos is discussed here), [14], [15], [23], [25], discussing use
of deterministic chaos inside particle swarm algorithm instead of PRGNs, [2]
- [5] investigating relations between chaos and randomness or the latest one
[6] and [7] using chaos with EAs in applications. Another papers using deter-
ministic chaos inside EAs are for example [16], [17], [18], [20], [21], discussing
combination of differential evolution and chaotic systems, [19] (chaotic op-
timization and immune co-evolution algorithm) and [22], [24] that also use
chaotic dynamics in evolutionary algorithms.

This publication is focused on use of deterministic chaos to generate n
periodic deterministic series, that are used inside evolutionary algorithms
instead of pseudo-random number generator.

2 Motivation

The motivation of the proposed experiments here is quite simple. For a long
time, various PRNGs were used inside evolutionary algorithms. During the
last few years, deterministic chaos systems (DCHS) instead of PRNGs have
been used. As was demonstrated in [14]-[15], very often the performance of
EAs using DCHS better or fully comparable with EAs using PRNGs. See for
example [14]. Used EAs (we do not discuss here the special cases, modified
for special experiments) of different kinds, such as genetic algorithms [12],
differential evolution [9], particle swarm [13], SOMA [8], scatter search [10],
evolutionary strategies [11], etc. do not analyze whether used pseudo-random
numbers are really random ones. Random numbers are simply used. On the
other side, as demonstrated in mentioned references, EAs with DCHS gives
the same or often better performance. Difference between series from PRNGs
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and DCHS is that in the case of DCHS, one can easily reconstruct/calculate
whole series generated by DCHS from one point. In the PRNGs it is im-
possible. Because DCHS generate periodical series (thanks to final numerical
precision) it is obvious that EAs performance shall be from a certain numer-
ical precision of DCHS comparable with performance of classical EAs. This
is the main aim of this paper - check whether PRNGs can be replaced by
deterministic periodical dynamics.

3 Experiment Design

Our experiments has been set so that periodical deterministic time series
based on deterministic chaos generators (see for example Fig. 1) and Eq.
2, were used instead of PRNGs. Based on the fact that numerical precision
has impact on existence of periodicity in deterministic chaos, we have se-
lected logistic equation, Eq. 2, and data series generated by this equation
for numerical precisions from interval [1, 13] (numbers behind decimal point)
with setting A = 4, see Tab. 2 which shows only maximal period for current
setting. Algorithms selected for our experiments were SOMA [8] and differ-
ential evolution (DERand1Bin and DELocalToBest) [9] . Setting of all three
algorithms is in Tab. 1. Based on these setting and algorithm architecture,
it is easy to calculate how many times has been used periodic data series
(PDS) in EAs generated by DCHS. The total cost function evaluation was
for SOMA maximally 172 727 and for both DE versions 130 000 times. Tab.
2 summarize the many precision levels were PDS were repeatedly used. All
experiments were done in Mathematica 9, on MacBook Pro, 2.8 GHz Intel
Core 2 Duo. Test function used in this experiment was 10th dimensional
Schwefel’s function (see Eq. 1) and each experiment was 100 times repeated
for each precision set. The aim was to find global extreme (10 × 418.983 at
position 420.969, 420.969, ..., 420.969) of this function as precise as possible.
So in total 3900 (3 algorithms × 100 repetitions × 13 different numerical
precisions) evolutionary experiments has been done. In each experiment, the
PRNGs used only on the start of Eq. 2 to set initial condition xstart. Re-
maining use of Eq. 2 was PRNGs free, i.e. PRNGs was not further in use.
There were in fact three case of studies of our experiments.

n∑

i=1

−xi sin(
√
|xi|) (1)

• Case 1. The first one was focused on the use of PDS, instead of PRNG
only for mutations, so in DE was used classical PRNG to select individ-
uals from population as well as in special error-correction procedures
(when individual leave searched space and has to be returned back).

• Case 2. In the second set, all PRNG numbers were fully replaced by
PDS numbers (with different precision and thus period length).
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• Case 3. The last part of our experiments was focused on the use of the
same algorithms (SOMA and DE) in its canonical versions with classical
PRNGs (standard pseudo-random generator in Wolfram Mathematica
9) just to compare performance with both Cases 1 and 2.

xn+1 = Axn (1− xn) (2)

800 850 900 950 1000

0.0

0.2

0.4

0.6

0.8

1.0

Iterations

x

Fig. 1 Time series of period 36 (precision = 4) based on Eq. 2 for A = 4, see
Tab. 2

Table 1 Algorithms setting. The same settings was used for both versions of DE.

DE SOMA

NP 20 PopSize 20
Dimensions 20 Dimensions 20
Generations 500 Migrations 20
F 0.9 PRT 0.1
CR 0.5 PathLength 5

Step 0.11

4 Results

Results based on all three experiments are reported in Tab. 3 - 10 and Fig. 2
- 8. Tables and figures are organized sequentially according to case examples.
Results of the Case 1 are recorded in Fig. 2 - 4 further in Tab. 3, 5 and 7.
Results of Case 2 are recorded in Fig. 5 - 7 further in Tab. 4, 6 and 8. The
last one, Case 3, is in Fig. 8 and Tab. 10.

For Case 1 and Case 2 has been used precision in DCHS according to
Tab. 2 to get PDS. In this table is also recorded how many times was n
periodic series repeatedly used in each algorithm. It is visible that in the
frame of our experiments it was enough to set precision to 5 (Case 1, Fig. 2,
Tab. 3, Tab. 5 and Tab. 7) and 8 (Case 2, Fig. 5, Tab. 4, Tab. 6 and Tab. 8).
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Table 2 Periodicity dependance of Eq. 2 on various precision. Table also shows as
to how many times was used n periodical series by the discussed algorithm.

Precision Maximal Period Repeated in SOMA Repeated in DE

1 4 43181 32500
2 10 17272 13000
3 29 5956 4482
4 36 4797 3611
5 170 1016 764
6 481 359 270
7 758 227 171
8 4514 38 28
9 11227 15 11
10 35200 4 3
11 57639 2 2
12 489154 0 0
13 518694 0 0

All results from both cases can be compared with Fig. 8 and Tab. 10 from
Case 3 that was using only PRNG (standard pseudo-random generator in
Wolfram Mathematica 9). When compared with Tab. 10 according to the
Median value, then it is visible that in Case 1 it is comparable with precision
equal to 4 (SOMA), 3 (DERand1Bin and DELocalToBest). For Case 2, it is
enough to have precision to 5 (SOMA), 7 (DERand1Bin) and 8 (DELocal-
ToBest). From Tab. 2 it is visible as to how many times was n periodic PDS
used with given precisions. Results are also summarized in Tab. 9.

Table 3 Case 1. SOMA AllToOne.

Precision Max 75% Median 25% Min

1 -585.311 -933.89 -1076.61 -1294.98 -1984.45
2 -771.596 -1225.85 -1392.08 -1572.34 -2324.94
3 -4144.75 -4175.6 -4179.39 -4182.09 -4186.95
4 -4051.62 -4182.91 -4186.16 -4187.5 -4189.39
5 -4070.28 -4186.44 -4187.86 -4188.75 -4189.68
6 -4172.77 -4185.4 -4187.13 -4188.04 -4189.42
7 -4068.95 -4187.24 -4188.75 -4189.03 -4189.65
8 -4058.85 -4184.46 -4187.2 -4188.05 -4189.29
9 -4069.58 -4185.51 -4187.4 -4187.98 -4189.48
10 -4177.38 -4186.37 -4187.5 -4188.46 -4189.55
11 -4174.2 -4185.52 -4187.49 -4188.56 -4189.35
12 -4066.18 -4185.32 -4187.4 -4188.61 -4189.71
13 -4144.51 -4186.16 -4187.58 -4188.7 -4189.51
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Table 4 Case 2. SOMA AllToOne.

Precision Max 75% Median 25% Min

1 823.851 687.668 687.668 -12.9572 -3042.29
2 -50.7378 -58.9429 -58.9429 -58.9429 -2146.33
3 220.071 220.071 -4057.14 -4132.14 -4169.95
4 -3761.36 -3987.13 -4044.72 -4068.93 -4182.16
5 -3914.18 -4136.2 -4185.91 -4189.17 -4189.62
6 -4157.77 -4187.88 -4188.76 -4189.12 -4189.60
7 -4069.75 -4187. -4188.64 -4189.33 -4189.61
8 -4104.29 -4188.22 -4188.99 -4189.39 -4189.75
9 -4181.43 -4187.81 -4188.59 -4189.13 -4189.70
10 -4182.85 -4188.05 -4188.76 -4189.15 -4189.53
11 -4179.54 -4188.1 -4188.89 -4189.23 -4189.67
12 -4185.73 -4188.35 -4188.93 -4189.24 -4189.77
13 -4185.14 -4187.93 -4188.6 -4189.12 -4189.60

Table 5 Case 1. DERand1Bin.

Precision Max 75% Median 25% Min

1 -1518.23 -1844.57 -2030.3 -2267.56 -2850.71
2 -2113.45 -2676.34 -2851.81 -3071.15 -3401.61
3 -4189.83 -4189.83 -4189.83 -4189.83 -4189.83
4 -4071.39 -4189.83 -4189.83 -4189.83 -4189.83
5 -4071.39 -4189.83 -4189.83 -4189.83 -4189.83
6 -4071.39 -4189.83 -4189.83 -4189.83 -4189.83
7 -4071.39 -4189.82 -4189.83 -4189.83 -4189.83
8 -4189.81 -4189.83 -4189.83 -4189.83 -4189.83
9 -4189.75 -4189.83 -4189.83 -4189.83 -4189.83
10 -4071.39 -4189.83 -4189.83 -4189.83 -4189.83
11 -4189.73 -4189.83 -4189.83 -4189.83 -4189.83
12 -4071.39 -4189.83 -4189.83 -4189.83 -4189.83
13 -4071.39 -4189.83 -4189.83 -4189.83 -4189.83
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Table 6 Case 2. DERand1Bin.

Precision Max 75% Median 25% Min

1 823.851 687.668 687.668 123.225 -12.9572
2 687.668 -58.9429 -58.9429 -58.9429 -58.9429
3 220.071 220.071 -1615.84 -2050.05 -2635.02
4 -1138.12 -1936.64 -2183.85 -2477.27 -3026.53
5 -1656.53 -2347.12 -2625.79 -3036.31 -4159.5
6 -2602. -3712.17 -3975.73 -4189.82 -4189.83
7 -2417.19 -4189.32 -4189.81 -4189.83 -4189.83
8 -2591.58 -4189.82 -4189.83 -4189.83 -4189.83
9 -4189.65 -4189.83 -4189.83 -4189.83 -4189.83
10 -4071.39 -4189.83 -4189.83 -4189.83 -4189.83
11 -4189.76 -4189.83 -4189.83 -4189.83 -4189.83
12 -4188.91 -4189.83 -4189.83 -4189.83 -4189.83
13 -4071.39 -4189.83 -4189.83 -4189.83 -4189.83

Table 7 Case 1. DELocalToBest.

Precision Max 75% Median 25% Min

1 -1339.95 -1872.95 -2060.63 -2292.03 -3371.71
2 -834.557 -2592.75 -2767.6 -2918.88 -3428.83
3 -971.065 -3429.78 -4189.83 -4189.83 -4189.83
4 -2004.78 -4172.27 -4188.8 -4189.68 -4189.83
5 -4052.35 -4189.76 -4189.82 -4189.83 -4189.83
6 -3886.55 -4186.71 -4189.71 -4189.82 -4189.83
7 -4071.28 -4189.77 -4189.82 -4189.83 -4189.83
8 -3980.9 -4189.76 -4189.83 -4189.83 -4189.83
9 -4071.39 -4189.82 -4189.83 -4189.83 -4189.83
10 -4071.39 -4189.82 -4189.83 -4189.83 -4189.83
11 -4071.38 -4189.81 -4189.83 -4189.83 -4189.83
12 -3895.89 -4189.8 -4189.83 -4189.83 -4189.83
13 -4015.18 -4189.8 -4189.83 -4189.83 -4189.83
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Table 8 Case 2. DELocalToBest.

Precision Max 75% Median 25% Min

1 823.851 687.668 687.668 123.225 -12.9572
2 -58.9429 -58.9429 -58.9429 -848.729 -2146.33
3 220.071 220.071 -2390.42 -2647.82 -3341.34
4 -1700.31 -2360.66 -2587.63 -2836.82 -3402.46
5 -1457.35 -2878.78 -3613.31 -4056.6 -4189.83
6 -2451.4 -3426.59 -3601.66 -3850.79 -4189.83
7 -2567.36 -3694.01 -4079.63 -4189.81 -4189.83
8 -3335.31 -4189.57 -4189.83 -4189.83 -4189.83
9 -4162.43 -4189.81 -4189.83 -4189.83 -4189.83
10 -3109.22 -4189.83 -4189.83 -4189.83 -4189.83
11 -4132.83 -4189.79 -4189.83 -4189.83 -4189.83
12 -4071.39 -4189.81 -4189.83 -4189.83 -4189.83
13 -3985.53 -4189.8 -4189.83 -4189.83 -4189.83
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Fig. 2 Case 1. Dependance of algorithm performance on precision.
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Fig. 3 Case 1. Dependance of algorithm performance on precision - detail.
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Fig. 5 Case 2. Dependance of algorithm performance on precision.
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Table 9 Summarization of all the best results from Tab. 10 from experiments
based on EAs and PDS

SOMA DERand1Bin DELocalToBest
Precision Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

1 -1984.45 -3042.29 -2850.71 -12.9572 -3371.71 -12.9572
2 -2324.94 -2146.33 -3401.61 -58.9429 -3428.83 -2146.33
3 -4186.95 -4169.95 -4189.83 -2635.02 -4189.83 -3341.34
4 -4189.39 -4182.16 -4189.83 -3026.53 -4189.83 -3402.46
5 -4189.68 -4189.62 -4189.83 -4159.5 -4189.83 -4189.83
6 -4189.42 -4189.60 -4189.83 -4189.83 -4189.83 -4189.83
7 -4189.65 -4189.61 -4189.83 -4189.83 -4189.83 -4189.83
8 -4189.29 -4189.75 -4189.83 -4189.83 -4189.83 -4189.83
9 -4189.48 -4189.70 -4189.83 -4189.83 -4189.83 -4189.83
10 -4189.55 -4189.53 -4189.83 -4189.83 -4189.83 -4189.83
11 -4189.35 -4189.67 -4189.83 -4189.83 -4189.83 -4189.83
12 -4189.71 -4189.77 -4189.83 -4189.83 -4189.83 -4189.83
13 -4189.51 -4189.60 -4189.83 -4189.83 -4189.83 -4189.83

Table 10 Case 3. Results of EAs with PRNG.

Algorithm Max 75% Median 25% Min

SOMA AllToOne -4087.96 -4165.07 -4173.78 -4178.38 -4186.74
DERand1Bin -4071.39 -4189.83 -4189.83 -4189.83 -4189.83
DELocalToBest -3738.01 -4160.41 -4185.35 -4189.32 -4189.83

5 Conclusion

The main motivation of the research reported in this paper is whether it is
possible to replace random number generators by deterministic processes orig-
inated in systems of deterministic chaos. In this participation were done three
kind of experiments the first two used deterministic generators inside evolu-
tionary algorithms (SOMA and differential algorithms) instead of pseudo-
random number generators and the last one used standard pseudo-random
generator in Wolfram Mathematica 9 in selected evolutionary algorithms to
compare efficiency of proposed and tested methods.

For different numerical precessions were generated periodic series; see Tab.
2, that were used instead of random ones. Based on the obtained results it can
be stated that at least in our case studies, all experiments exhibit fact that
random number generators can be replaced by deterministic processes with
small period (29 - 4514), with the repeated use in evolutionary algorithms
with quite big frequency (5956 - 28 times). Results of the best reached min-
imum of each algorithm are also summarized in Tab. 9. An advantage of
the proposed use of deterministic processes is the fact that in such case it
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is possible to fully repeat runs of given algorithm, analyze its behavior de-
terministically, including its full path on searched fitness landscape. We also
believe that mathematical proofs can be in such case more easily constructed
for such class of evolutionary algorithms.

Despite the widely presumed fact that pseudo-random number generators
(also for evolutionary algorithms use) has to have as big period as possible
(for example Mersenne twister with 219937−1) and such as the 232 common in
many software packages, we show here that deterministic periodical processes
with period 29 - 4514 is enough for our experiments.

Our further research is focused on more extensive and intensive testing of
our ideas proposed here. Our aim is to try algorithms like scatter search [10],
evolutionary strategies [11], genetic algorithms [12], [28] or particle swarm
[13]. Also novel algorithms will be tested for its performance under our pro-
posed approach in [26], [27] and alternative methods of symbolic regression
[29].

Wider class of different algorithms, test functions and deterministic pro-
cesses will be selected for future experiments to prove and specify the domain
of validity of our ideas proposed here.

Acknowledgements. The following two grants are acknowledged for the financial
support provided for this research: Grant Agency of the Czech Republic - GACR
P103/13/08195S, by the Development of human resources in research and devel-
opment of latest soft computing methods and their application in practice project,
reg. no. CZ.1.07/2.3.00/20.0072 funded by Operational Programme Education for
Competitiveness, co-financed by ESF and state budget of the Czech Republic, par-
tially supported by Grant of SGS No. SP2013/114, VŠB - Technical University of
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