Publikace UTB
Repozitář publikační činnosti UTB

Computational intelligence and wavelet transform in walk symmetry analysis using accelerometers

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Computational intelligence and wavelet transform in walk symmetry analysis using accelerometers en
dc.contributor.author Procházka, Aleš
dc.contributor.author Tůmová, Tereza
dc.contributor.author Charvátová, Hana
dc.contributor.author Vyšata, Oldřich
dc.relation.ispartof 2025 25th International Conference on Digital Signal Processing, DSP
dc.identifier.issn 2165-3577 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1546-1874 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 9798331512132
dc.date.issued 2025
dc.event.title 25th International Conference on Digital Signal Processing, DSP 2025
dc.event.location Pylos
utb.event.state-en Greece
utb.event.state-cs Řecko
dc.event.sdate 2025-02-21
dc.event.edate 2025-02-23
dc.type conferenceObject
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/DSP65409.2025.11075087
dc.relation.uri https://ieeexplore.ieee.org/document/11075087
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11075087
dc.subject Biomedical Signal Processing en
dc.subject Data Acquisition en
dc.subject Diagnosis en
dc.subject Digital Signal Processing en
dc.subject Discrete Wavelet Transforms en
dc.subject Motion Analysis en
dc.subject Motion Sensors en
dc.subject Neurology en
dc.subject Time And Motion Study en
dc.subject Wavelet Decomposition en
dc.subject Biomedical Applications en
dc.subject Digital Signal-processing Method en
dc.subject Engineering Applications en
dc.subject Gait Symmetries en
dc.subject Mathematical Tools en
dc.subject Motion Dynamics en
dc.subject Sport Performance en
dc.subject Symmetry Analysis en
dc.subject Time Synchronization en
dc.subject Wavelets Transform en
dc.subject Spectrum Analysis en
dc.description.abstract Computational intelligence and digital signal processing methods are fundamental mathematical tools widely used in biomedical and engineering applications. Gait symmetry analysis plays a very important role in detecting motion disorders in neurology, rehabilitation, and sports performance. This study focuses on data acquisition using a set of accelerometric sensors to record motion dynamics, ensure time synchronization of signals, and extract features for recognizing distinct motion patterns. The proposed methodology incorporates spectral analysis and digital filtering techniques to eliminate noise and irrelevant frequency components. Motion symmetry analysis is performed using energy distribution, calculated by discrete Fourier and wavelet transforms, with a focus on detailed coefficients at a specified decomposition level. Symmetry estimation is achieved by analyzing the ratio of energy within wavelet bands corresponding to the left and right sides of the body. Furthermore, spatial pattern distribution is analyzed to identify motion asymmetry, with artificial intelligence techniques employed for its evaluation. These results demonstrate the potential of computational intel-ligence in clinical diagnostics of specific neurological disorders. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012580
utb.identifier.scopus 2-s2.0-105012202023
utb.identifier.wok 001556221900068
utb.source C-wok
dc.date.accessioned 2025-11-27T12:48:52Z
dc.date.available 2025-11-27T12:48:52Z
dc.description.sponsorship This investigation was reinforced by the European Union under the project ROBOPROX (reg. no. CZ.02.01.01/00/22 008/0004590) in the area of machine learning. The research related to sensor technology was supported by Operational Programme Johannes Amos Comenius financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SENDISO - CZ.02.01.01/00/22 008/0004596).
utb.contributor.internalauthor Charvátová, Hana
utb.fulltext.sponsorship This investigation was reinforced by the European Union under the project ROBOPROX (reg. no. CZ.02.01.01/00/22_008/0004590) in the area of machine learning. The research related to sensor technology was supported by Operational Programme Johannes Amos Comenius financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SENDISO - CZ.02.01.01/00/22_008/0004596).
utb.scopus.affiliation University of Chemistry and Technology, Prague, Prague, Czech Republic; Tomas Bata University in Zlin, Zlin, Czech Republic; Fakultní Nemocnice Hradec Králové, Hradec Kralove, Czech Republic
utb.fulltext.projects CZ.02.01.01/00/22_008/0004590
utb.fulltext.projects SENDISO - CZ.02.01.01/00/22_008/0004596
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam