Publikace UTB
Repozitář publikační činnosti UTB

Rehabilitation and motion symmetry analysis with a TACX smart cycling trainer using computational intelligence

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Rehabilitation and motion symmetry analysis with a TACX smart cycling trainer using computational intelligence en
dc.contributor.author Charvátová, Hana
dc.contributor.author Martynek, Daniel
dc.contributor.author Molčanová, Alexandra
dc.contributor.author Procházka, Aleš
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 13
dc.citation.spage 113495
dc.citation.epage 113501
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2025.3579804
dc.relation.uri https://ieeexplore.ieee.org/document/11036716
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11036716
dc.subject Heart rate en
dc.subject Sensors en
dc.subject Legged locomotion en
dc.subject Data acquisition en
dc.subject Computational intelligence en
dc.subject Monitoring en
dc.subject Intelligent sensors en
dc.subject Wearable sensors en
dc.subject Biomedical monitoring en
dc.subject Vectors en
dc.subject wireless sensors en
dc.subject accelerometers en
dc.subject rehabilitation en
dc.subject physical activity monitoring en
dc.subject Accelerometers en
dc.subject Computational Intelligence en
dc.subject Physical Activity Monitoring en
dc.subject Rehabilitation en
dc.subject Wireless Sensors en
dc.subject Accelerometers en
dc.subject Biomedical Signal Processing en
dc.subject Classification (of Information) en
dc.subject Data Handling en
dc.subject Digital Signal Processing en
dc.subject Drops en
dc.subject Heart en
dc.subject Motion Analysis en
dc.subject Motion Sensors en
dc.subject Neural Networks en
dc.subject Physiological Models en
dc.subject Sports en
dc.subject Virtual Reality en
dc.subject Wearable Sensors en
dc.subject Heart-rate en
dc.subject Motion Response en
dc.subject Performances Evaluation en
dc.subject Physical Activity Monitoring en
dc.subject Physiological Response en
dc.subject Sensor Processing en
dc.subject Signal-processing en
dc.subject Sport Monitoring en
dc.subject Symmetry Analysis en
dc.subject Wireless Sensor en
dc.subject Patient Rehabilitation en
dc.description.abstract Motion analysis provides important information in rehabilitation, performance evaluation, and movement symmetry assessment, with applications including neurology, biomedicine, surgery, and sports monitoring. The integration of virtual reality, wearable sensors, and signal processing forms a robust interdisciplinary platform for such analysis. Specific methods are based on monitoring physiological and motion responses during controlled exercises that simulate real-world motion scenarios. This study focuses on processing of signals from wearable sensors collected from smart indoor trainers, enabling motion monitoring under predefined load conditions. The acquired datasets include heart rate (HR), motion accelerometric and gyrometric signals, and fitness parameters (cycling speed). The research objectives include analysis of motion patterns, evaluation of motion symmetry under varying loads, and examination of heart rate responses to load variations. Signal processing is conducted using advanced methods that include computational intelligence, digital signal processing, and artificial intelligence tools for data classification. Results point to the mean delay of the HR drop to 97% of the HR range in 15s after the change from the cycling on the slope of 8% to the rest period and the following drop to 5% in next 54s. The classification of spectral features evaluated separately for the left and right legs pointed the classification accuracy of 94.5% for accelerometric data and 99.1% for gyrometric data estimated by the use of the two layer neural network and the symmetry coefficient of 1.05 for the slope of 8%. In general, the paper presents selected processing methods and experimental results pointing to the effectiveness of computational intelligence in motion analysis. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012575
utb.identifier.scopus 2-s2.0-105008657514
utb.identifier.wok 001522922600012
utb.source j-scopus
dc.date.accessioned 2025-11-27T12:48:52Z
dc.date.available 2025-11-27T12:48:52Z
dc.description.sponsorship This work was supported in part by European Union (EU) through the Project ROBOPROX in the Area of Machine Learning under GrantCZ.02.01.01/00/22_008/0004590; and in part by the Operational Programme Johannes Amos Comenius financed by European Structuraland Investment Funds and the Czech Ministry of Education, Youth and Sports under Project SENDISO-CZ.02.01.01/00/22_008/0004596.This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols wasgranted by the Ethics Committee of the Neurological Center at Rychnov n. Kn., Czech Republic. Thanks belong to Assoc. Prof. MD Oldrich Vysata fromthe Neurological Department of the Faculty of Medicineand to Dr. Daniela Janakova from the Department of SportsMedicine of the Charles University in Prague for a veryefficient collaboration.
dc.description.sponsorship European Union (EU) [CZ.02.01.01/00/22_008/0004590]; Operational Programme Johannes Amos Comenius - European Structural and Investment Funds; Czech Ministry of Education, Youth and Sports [SENDISO-CZ.02.01.01/00/22_008/0004596]
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Charvátová, Hana
utb.fulltext.sponsorship This work was supported in part by European Union (EU) through the Project ROBOPROX in the Area of Machine Learning under Grant CZ.02.01.01/00/22_008/0004590; and in part by the Operational Programme Johannes Amos Comenius financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports under Project SENDISO-CZ.02.01.01/00/22_008/0004596.
utb.wos.affiliation [Charvatova, Hana] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76001, Czech Republic; [Martynek, Daniel; Molcanova, Alexandra; Prochazka, Ales] Univ Chem & Technol Prague, Dept Math Informat & Cybernet, Prague 16000, Czech Republic; [Prochazka, Ales] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Prague 16000, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Zlin, Czech Republic; University of Chemistry and Technology, Prague, Prague, Czech Republic; Czech Institute of Informatics, Robotics and Cybernetics, Prague, Czech Republic
utb.fulltext.projects CZ.02.01.01/00/22_008/0004590
utb.fulltext.projects SENDISO-CZ.02.01.01/00/22_008/0004596
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International