Publikace UTB
Repozitář publikační činnosti UTB

Efficient software development effort estimation approaches for improving scalability in the training phase

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Efficient software development effort estimation approaches for improving scalability in the training phase en
dc.contributor.author Ho, Le Thi Kim Nhung
dc.contributor.author Šilhavý, Petr
dc.contributor.author Šilhavý, Radek
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 13
dc.citation.spage 116304
dc.citation.epage 116323
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2025.3586081
dc.relation.uri https://ieeexplore.ieee.org/document/11071673
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11071673
dc.subject estimation en
dc.subject accuracy en
dc.subject scalability en
dc.subject collaborative filtering en
dc.subject training en
dc.subject software development management en
dc.subject software en
dc.subject estimation error en
dc.subject industries en
dc.subject indexes en
dc.subject neighbor-based collaborative filtering en
dc.subject similarity measures en
dc.subject software development effort estimation en
dc.subject system scalability en
dc.subject Cluster Centroids en
dc.subject Cluster Qualities en
dc.subject Effort Estimation en
dc.subject Estimation Approaches en
dc.subject Neighbor-based Collaborative Filtering en
dc.subject Similarity Measure en
dc.subject Software Development Effort en
dc.subject Software Development Effort Estimation en
dc.subject System Scalability en
dc.subject Training Phasis en
dc.subject Software Design en
dc.description.abstract Effective software effort estimation is essential for project management, but faces scalability challenges with large datasets. While clustering can address this complexity, standard methods often rely on random initial centers, leading to inconsistent and less precise results. This randomness frequently overlooks critical contextual factors, such as industry or domain-specific characteristics, which can impair cluster quality and the accuracy of effort predictions. To overcome these issues, this study introduces the Contextual Initial Cluster Centroids (CICC), a novel methodology designed to optimize initial centroid selection. Unlike approaches that depend on randomness or are computationally intensive, CICC uses parallel processing of Jaccard similarity and a refined neighbor-finding technique, K-Reciprocal Nearest Neighbors (KRNN), to identify the most relevant and similar projects as initial centers. This deterministic approach ensures clusters are built around meaningful, context-rich representatives, reducing computations and improving scalability. Experiments on public software project datasets show that CICC significantly outperforms existing techniques. It achieves higher cluster quality, measured by metrics like the Global Silhouette Index, and provides more accurate effort estimates, indicated by lower MAE and higher PRED values. By establishing a more robust and efficient foundation for effort estimation, CICC offers considerable potential to optimize project planning and resource allocation in large-scale software development. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012574
utb.identifier.scopus 2-s2.0-105010027211
utb.identifier.wok 001527231900008
utb.source j-scopus
dc.date.accessioned 2025-11-27T12:48:52Z
dc.date.available 2025-11-27T12:48:52Z
dc.description.sponsorship This work was supported by the Faculty of Applied Informatics, Tomas Bata University, Zl\u00EDn, under Project RO30246061025/2102.
dc.description.sponsorship Faculty of Applied Informatics, Tomas Bata University, Zlin [RO30246061025/2102]
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Ho, Le Thi Kim Nhung
utb.contributor.internalauthor Šilhavý, Petr
utb.contributor.internalauthor Šilhavý, Radek
utb.fulltext.sponsorship This work was supported by the Faculty of Applied Informatics, Tomas Bata University, Zlín, under Project RO30246061025/2102.
utb.wos.affiliation [Nhung, Ho Le Thi Kim; Silhavy, Petr; Silhavy, Radek] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects RO30246061025/2102
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International