Kontaktujte nás | Jazyk: čeština English
| dc.title | Fractional-order identification and analysis of elevation and azimuth dynamics in a twin rotor system | en |
| dc.contributor.author | Wendimu, Abebe Alemu | |
| dc.contributor.author | Matušů, Radek | |
| dc.contributor.author | Shaikh, Ibrahim | |
| dc.contributor.author | Wolde, Mihret Kochito | |
| dc.relation.ispartof | Lecture Notes in Networks and Systems | |
| dc.identifier.issn | 2367-3389 Scopus Sources, Sherpa/RoMEO, JCR | |
| dc.identifier.issn | 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR | |
| dc.identifier.isbn | 9789819652372 | |
| dc.identifier.isbn | 9783031931055 | |
| dc.identifier.isbn | 9789819662968 | |
| dc.identifier.isbn | 9783031999963 | |
| dc.identifier.isbn | 9783031950162 | |
| dc.identifier.isbn | 9783031947698 | |
| dc.identifier.isbn | 9783032004406 | |
| dc.identifier.isbn | 9783031910074 | |
| dc.identifier.isbn | 9783031926105 | |
| dc.identifier.isbn | 9789819639410 | |
| dc.date.issued | 2025 | |
| utb.relation.volume | 1567 LNNS | |
| dc.citation.spage | 609 | |
| dc.citation.epage | 630 | |
| dc.event.title | 11th Intelligent Systems Conference, IntelliSys 2025 | |
| dc.event.location | Amsterdam | |
| utb.event.state-en | Nizozemsko | |
| utb.event.state-cs | Amsterdam | |
| dc.event.sdate | 2025-08-28 | |
| dc.event.edate | 2025-08-29 | |
| dc.type | conferenceObject | |
| dc.language.iso | en | |
| dc.publisher | Springer Science and Business Media Deutschland GmbH | |
| dc.identifier.doi | 10.1007/978-3-032-00071-2_37 | |
| dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-032-00071-2_37 | |
| dc.subject | fminsearch | en |
| dc.subject | FOMCON | en |
| dc.subject | fractional-order modeling | en |
| dc.subject | identification | en |
| dc.subject | integer-order models | en |
| dc.subject | least square method | en |
| dc.subject | stability | en |
| dc.subject | twin rotor system | en |
| dc.subject | adaptive control systems | en |
| dc.subject | convergence of numerical methods | en |
| dc.subject | dynamics | en |
| dc.subject | identification (control systems) | en |
| dc.subject | intelligent control | en |
| dc.subject | large scale systems | en |
| dc.subject | Matlab | en |
| dc.subject | real time systems | en |
| dc.subject | time domain analysis | en |
| dc.subject | time measurement | en |
| dc.subject | fminsearch | en |
| dc.subject | fractional order control | en |
| dc.subject | fractional-order models | en |
| dc.subject | identification | en |
| dc.subject | integer order | en |
| dc.subject | integer-order model | en |
| dc.subject | least-squares methods | en |
| dc.subject | modelling and controls | en |
| dc.subject | twin rotor systems | en |
| dc.subject | least squares approximations | en |
| dc.description.abstract | Accurate modeling of complex systems is essential for the development of advanced control strategies. While traditional integer-order models have been widely applied, fractional-order modeling offers superior accuracy in capturing system dynamics. Despite its potential, research on the offline identification of fractional-order models for twin rotor systems remains limited, especially using real-time measurement data. This study addresses this gap by investigating the offline identification of fractional-order models for the elevation and azimuth angles of a twin rotor system based on real-time data. The Fractional-Order Modeling and Control (FOMCON) toolbox in MATLAB is utilized for time-domain model identification. A comparative analysis is conducted between fractional-order and integer-order models, employing MATLAB’s fminsearch function, the explicit (one-time) Least Squares Method (LSM), the Recursive Least Squares Method (RLSM), and its modified variants. Key findings demonstrate that fractional-order models yield superior performance in approximating the elevation and azimuth dynamics compared to integer-order models, achieving improved model fitness and enhanced stability. These results highlight the potential of fractional-order models to significantly improve control system design for twin rotor applications. Overall, the study contributes a robust framework for plant modeling, paving the way for more precise and adaptive control strategies in complex rotor systems. | en |
| utb.faculty | Faculty of Applied Informatics | |
| dc.identifier.uri | http://hdl.handle.net/10563/1012533 | |
| utb.identifier.scopus | 2-s2.0-105014482687 | |
| dc.date.accessioned | 2025-10-16T07:25:47Z | |
| dc.date.available | 2025-10-16T07:25:47Z | |
| dc.description.sponsorship | This study was supported by the Internal Grant Agency of the Tomas Bata University in Zl\u00EDn, Czech Republic, under the project number IGA/CebiaTech/024 /001. | |
| utb.ou | Department of Automation and Control Engineering | |
| utb.contributor.internalauthor | Wendimu, Abebe Alemu | |
| utb.contributor.internalauthor | Matušů, Radek | |
| utb.contributor.internalauthor | Shaikh, Ibrahim | |
| utb.contributor.internalauthor | Wolde, Mihret Kochito | |
| utb.fulltext.sponsorship | This study was supported by the Internal Grant Agency of the Tomas Bata University in Zlín, Czech Republic, under the project number IGA/CebiaTech/024/001. | |
| utb.scopus.affiliation | Tomas Bata University in Zlin, Zlin, Czech Republic | |
| utb.fulltext.projects | IGA/CebiaTech/024/001 |
| Soubory | Velikost | Formát | Zobrazit |
|---|---|---|---|
|
K tomuto záznamu nejsou připojeny žádné soubory. |
|||