TBU Publications
Repository of TBU Publications

Optimization of the dark fermentation technique for hydrogen production through supplementation with ascorbic acid and/or l-cysteine by Clostridium butyricum CCDBC 11

DSpace Repository

Show simple item record


dc.title Optimization of the dark fermentation technique for hydrogen production through supplementation with ascorbic acid and/or l-cysteine by Clostridium butyricum CCDBC 11 en
dc.contributor.author Pištěková, Hana
dc.contributor.author Dušánková, Miroslava
dc.contributor.author Šopík, Tomáš
dc.contributor.author Klaban, Jakub
dc.contributor.author Dostálková, Jitka
dc.contributor.author Moučka, Robert
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Journal of Agricultural and Food Chemistry
dc.identifier.issn 0021-8561 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 73
utb.relation.issue 22
dc.citation.spage 13654
dc.citation.epage 13662
dc.type article
dc.language.iso en
dc.publisher American Chemical Society
dc.identifier.doi 10.1021/acs.jafc.5c03194
dc.relation.uri https://pubs.acs.org/doi/10.1021/acs.jafc.5c03194
dc.subject biohydrogen production en
dc.subject dark fermentation en
dc.subject ascorbic acid en
dc.subject L-cysteine en
dc.subject Clostridium butyricum en
dc.description.abstract This study explores the enhancement of biohydrogen production through the addition of oxygen scavengers, ascorbic acid, and l-cysteine during dark fermentation by Clostridium butyricum strain. The supplementation of these compounds significantly reduced the bacterial lag phase and accelerated cell growth, thereby boosting the hydrogen output. Using saccharified corn scrap as the substrate, a maximum cumulative hydrogen yield of 2.20 mol H2/mol glucose was achieved with 5 mg/L ascorbic acid. This treatment reduced the lag phase by 65.6% and increased the hydrogen yield by 40.9% compared to the control and by 11.4% relative to l-cysteine supplementation alone. Biogas production was quantified via the water displacement method, and hydrogen content was analyzed using gas chromatography. The results indicate that ascorbic acid is a cost-effective and efficient additive for improving the hydrogen yield in dark fermentation processes. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1012461
utb.identifier.scopus 2-s2.0-105005950089
utb.identifier.wok 001495093300001
utb.identifier.pubmed 40418735
utb.identifier.coden JAFCA
utb.source j-scopus
dc.date.accessioned 2025-03-20T08:15:14Z
dc.date.available 2025-03-20T08:15:14Z
dc.description.sponsorship European Just Transition Fund; Ministerstvo Životního Prostředí, MZP, (CZ.10.03.01/00/22_003/0000045); Ministerstvo Životního Prostředí, MZP; Ministerstvo Školství, Mládeže a Tělovýchovy, MEYS, (CZ.02.01.01/00/23_021/0009004); Ministerstvo Školství, Mládeže a Tělovýchovy, MEYS; Tomas Bata University in Zlín, TBU, (RP/CPS/2024-28/002); Tomas Bata University in Zlín, TBU
dc.description.sponsorship Ministerstvo ?kolstv?, Ml?de?e a Telov?chovy [CZ.10.03.01/00/22_003/0000045]; European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic [CZ.02.01.01/00/23_021/0009004]; Ministry of Education, Youth and Sports of Czech Republic, Operational Programme Johannes Amos Comenius OP JAC [RP/CPS/2024-28/002]; Tomas Bata University in Zlin; Ministry of Education, Youth and Sports of the Czech Republic
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Pištěková, Hana
utb.contributor.internalauthor Dušánková, Miroslava
utb.contributor.internalauthor Šopík, Tomáš
utb.contributor.internalauthor Klaban, Jakub
utb.contributor.internalauthor Dostálková, Jitka
utb.contributor.internalauthor Moučka, Robert
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Hana Pistekova,* Miroslava Dusankova, Tomas Sopik, Jakub Klaban, Jitka Dostalkova, Robert Moucka, and Vladimir Sedlarik* AUTHOR INFORMATION Corresponding Authors Hana Pistekova − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; orcid.org/0000-0001-9657-3230; Email: pistekova@utb.cz Vladimir Sedlarik − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; orcid.org/0000-0002-7843-0719; Email: sedlarik@utb.cz Authors Miroslava Dusankova − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Tomas Sopik − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Jakub Klaban − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Jitka Dostalkova − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Robert Moucka − Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jafc.5c03194
utb.fulltext.dates Received: March 20, 2025 Revised: May 14, 2025 Accepted: May 15, 2025 Published: May 26, 2025
utb.fulltext.references (1) Ishaq, H.; Dincer, I.; Crawford, C. A Review on Hydrogen Production and Utilization: Challenges and Opportunities. Int. J. Hydrogen Energy 2022, 47 (62), 26238−26264. (2) D’Silva, T. C.; Khan, S. A.; Kumar, S.; Kumar, D.; Isha, A.; Deb, S.; Yadav, S.; Illathukandy, B.; Chandra, R.; Vijay, V. K.; Subbarao, P. M. V.; Bagi, Z.; Kovács, K. L.; Yu, L.; Gandhi, B. P.; Semple, K. T. Biohydrogen Production through Dark Fermentation from Waste Biomass: Current Status and Future Perspectives on Biorefinery Development. Fuel 2023, 350, No. 128842. (3) Cao, Y.; Liu, H.; Liu, W.; Guo, J.; Xian, M. Debottlenecking the Biological Hydrogen Production Pathway of Dark Fermentation: Insight into the Impact of Strain Improvement. Microb. Cell Fact. 2022, 21 (1), 166. (4) Yuan, Z.; Yang, H.; Zhi, X.; Shen, J. Enhancement Effect of LCysteine on Dark Fermentative Hydrogen Production. Int. J. Hydrogen Energy 2008, 33 (22), 6535−6540. (5) Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. Reviewing the Potential of Bio-Hydrogen Production by Fermentation. Renewable Sustainable Energy Rev. 2020, 131, No. 110023. (6) Jain, R.; Panwar, N. L.; Jain, S. K.; Gupta, T.; Agarwal, C.; Meena, S. S. Bio-Hydrogen Production through Dark Fermentation: An Overview. Biomass Convers. Biorefinery 2024, 14 (12), 12699−12724. (7) Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P. N. L.; Esposito, G. A Review on Dark Fermentative Biohydrogen Production from Organic Biomass: Process Parameters and Use of byProducts. Appl. Energy 2015, 144, 73−95. (8) Das, D.; Veziroglu, T. N. Advances in Biological Hydrogen Production Processes. Int. J. Hydrogen Energy 2008, 33 (21), 6046−6057. (9) Kamaraj, M.; Ramachandran, K. K.; Aravind, J. Biohydrogen Production from Waste Materials: Benefits and Challenges. Int. J. Environ. Sci. Technol. 2020, 17 (1), 559−576. (10) Martinez-Burgos, W. J.; Sydney, E. B.; de Paula, D. R.; Medeiros, A. B. P.; de Carvalho, J. C.; Molina, D.; Soccol, C. R. Hydrogen Production by Dark Fermentation Using a New Low-Cost Culture Medium Composed of Corn Steep Liquor and Cassava Processing Water: Process Optimization and Scale-Up. Bioresour. Technol. 2021, 320, No. 124370. (11) Elbeshbishy, E.; Dhar, B. R.; Nakhla, G.; Lee, H. S. A Critical Review on Inhibition of Dark Biohydrogen Fermentation. Renewable Sustainable Energy Rev. 2017, 79, 656−668. (12) Bao, M.; Su, H.; Tan, T. Dark Fermentative Bio-Hydrogen Production: Effects of Substrate Pre-Treatment and Addition of Metal Ions or L-Cysteine. Fuel 2013, 112, 38−44. (13) Wen, H.-Q.; Xing, D.-F.; Xie, G.-J.; Yin, T.-M.; Ren, N.-Q.; Liu, B.-F. Enhanced Photo-Fermentative Hydrogen Production by Synergistic Effects of Formed Biofilm and Added L-Cysteine. Renewable Energy 2019, 139, 643−650. (14) Yang, G.; Wang, J. Various Additives for Improving Dark Fermentative Hydrogen Production: A Review. Renew. Sustain. Energy Rev. 2018, 95, 130−146. (15) Zhao, X.; Xing, D.; Liu, B.; Lu, L.; Zhao, J.; Ren, N. The Effects of Metal Ions and L-Cysteine on HydA Gene Expression and Hydrogen Production by Clostridium Beijerinckii RZF-1108. Int. J. Hydrogen Energy 2012, 37 (18), 13711−13717. (16) Zhang, L.; Ding, J.; Li, Y.; Liu, X.; Jiang, J.; Ren, N. Effects of LCysteine and Giant Panda Excrement on Hydrogen Production from Cassava Residues. J. Residuals Sci. Technol. 2016, 13, S227−S234. (17) Qu, Y. Y.; Guo, W. Q.; Ding, J.; Ren, N. Q. Effect of L-Cysteine on Continuous Fermentative Hydrogen Production. Appl. Mech. Mater. 2012, 178−181, 406−410. (18) Xie, G.-J.; Liu, B.-F.; Xing, D.-F.; Nan, J.; Ding, J.; Ren, N.-Q. Photo-Fermentative Bacteria Aggregation Triggered by L-Cysteine during Hydrogen Production. Biotechnol. Biofuels 2013, 6 (1), 64. (19) Guo, W. Q.; Ding, J.; Cao, G. L.; Chen, C.; Zhou, X. J.; Ren, N. Q. Accelerated Startup of Hydrogen Production Expanded Granular Sludge Bed with L-Cysteine Supplementation. Energy 2013, 60, 94−98. (20) Shu, G.; Yang, H.; Tao, Q.; He, C. Effect of Ascorbic Acid and Cysteine Hydrochloride on Growth of Bifidobacterium Bifidum. Adv. J. Food Sci. Technol. 2013, 5 (6), 678−681. (21) Dey, A.; Neogi, S. Oxygen Scavengers for Food Packaging Applications: A Review. Trends Food Sci. Technol. 2019, 90, 26−34. (22) Zhu, S.; Zhang, Y.; Zhang, Z.; Ai, F.; Zhang, H.; Li, Y.; Wang, Y.; Zhang, Q. Ascorbic Acid-Mediated Zero-Valent Iron Enhanced Hydrogen Production Potential of Bean Dregs and Corn Stover by Photo Fermentation. Bioresour. Technol. 2023, 374, No. 128761. (23) Sivaramakrishnan, R.; Shanmugam, S.; Sekar, M.; Mathimani, T.; Incharoensakdi, A.; Kim, S. H.; Parthiban, A.; Edwin Geo, V.; Brindhadevi, K.; Pugazhendhi, A. Insights on Biological Hydrogen Production Routes and Potential Microorganisms for High Hydrogen Yield. Fuel 2021, 291, No. 120136. (24) Drbohlav, J.; Havlíková, Š.; Kvasničková, E.; Rittich, B.; Španová, A. Způsob Zpracování Odpadních Vod z Výroby Sýrů 305450, 2022. (25) Havlíková, Š.; Kvasničková, E.; Rittich, B.; Španová, A. Sledování Tvorby Vodíku Při Fermentaci Různých Médií Kmenem Clostridium Butyricum E16A. Mlékařské List. 2011, 126. (26) Boshagh, F.; Rostami, K. A Review of Measurement Methods of Biological Hydrogen. Int. J. Hydrogen Energy 2020, 45 (46), 24424−24452. (27) Dada, O.; Yusoff, W. M. W.; Kalil, M. S. Biohydrogen Production from Ricebran Using Clostridium Saccharoperbutylacetonicum N1−4. Int. J. Hydrogen Energy 2013, 38 (35), 15063−15073. (28) Argun, H.; Kargi, F.; Kapdan, I.; Oztekin, R. Batch Dark Fermentation of Powdered Wheat Starch to Hydrogen Gas: Effects of the Initial Substrate and Biomass Concentrations. Int. J. Hydrogen Energy 2008, 33 (21), 6109−6115. (29) Adessi, A.; Concato, M.; Sanchini, A.; Rossi, F.; De Philippis, R. Hydrogen Production under Salt Stress Conditions by a Freshwater Rhodopseudomonas Palustris Strain. Appl. Microbiol. Biotechnol. 2016, 100 (6), 2917−2926. (30) Zhang, T.; Jiang, D.; Zhang, H.; Jing, Y.; Tahir, N.; Zhang, Y.; Zhang, Q. Comparative Study on Bio-Hydrogen Production from Corn Stover: Photo-Fermentation, Dark-Fermentation and DarkPhoto Co-Fermentation. Int. J. Hydrogen Energy 2020, 45 (6), 3807−3814. (31) Xie, G.-J.; Liu, B.-F.; Ding, J.; Ren, H.-Y.; Xing, D.-F.; Ren, N.-Q. Hydrogen Production by Photo-Fermentative Bacteria Immobilized on Fluidized Bio-Carrier. Int. J. Hydrogen Energy 2011, 36 (21), 13991−13996. (32) Chirife, J.; Herszage, L.; Joseph, A.; Kohn, E. S. In Vitro Study of Bacterial Growth Inhibition in Concentrated Sugar Solutions: Microbiological Basis for the Use of Sugar in Treating Infected Wounds. Antimicrob. Agents Chemother. 1983, 23 (5), 766−773. (33) Hu, C. C.; Giannis, A.; Chen, C. L.; Qi, W.; Wang, J. Y. Comparative Study of Biohydrogen Production by Four Dark Fermentative Bacteria. Int. J. Hydrogen Energy 2013, 38 (35), 15686−15692. (34) Yin, Y.; Wang, J. Isolation and Characterization of a Novel Strain Clostridium Butyricum INET1 for Fermentative Hydrogen Production. Int. J. Hydrogen Energy 2017, 42 (17), 12173−12180. (35) Davila-Vazquez, G.; Cota-Navarro, C. B.; Rosales-Colunga, L. M.; de León-Rodríguez, A.; Razo-Flores, E. Continuous Biohydrogen Production Using Cheese Whey: Improving the Hydrogen Production Rate. Int. J. Hydrogen Energy 2009, 34 (10), 4296−4304. (36) Liu, C. H.; Chang, C. Y.; Cheng, C. L.; Lee, D. J.; Chang, J. S. Fermentative Hydrogen Production by Clostridium Butyricum CGS5 Using Carbohydrate-Rich Microalgal Biomass as Feedstock. Int. J. Hydrogen Energy 2012, 37 (20), 15458−15464. (37) Plangklang, P.; Reungsang, A.; Pattra, S. Enhanced BioHydrogen Production from Sugarcane Juice by Immobilized Clostridium Butyricum on Sugarcane Bagasse. Int. J. Hydrogen Energy 2012, 37 (20), 15525−15532. (38) Teke, G. M.; Anye Cho, B.; Bosman, C. E.; Mapholi, Z.; Zhang, D.; Pott, R. W. M. Towards Industrial Biological Hydrogen Production: A Review. World J. Microbiol. Biotechnol. 2024, 40 (1), 37. (39) Litti, Y. V.; Khuraseva, N. D.; Vishnyakova, A. V.; Zhuravleva, E. A.; Kovalev, A. A.; Kovalev, D. A.; Panchenko, V. A.; Parshina, S. N. Comparative Study on Biohydrogen Production by Newly Isolated Clostridium Butyricum SP4 and Clostridium Beijerinckii SP6. Int. J. Hydrogen Energy 2023, 48 (71), 27540−27556.
utb.fulltext.sponsorship This work was supported from the European Just Transition Fund within the Operational Programme: Just Transition under the aegis of the Ministry of the Environment of the Czech Republic, project CirkArena number CZ.10.03.01/00/22_003/0000045 and the Ministry of Education, Youth and Sports of Czech Republic, Operational Programme Johannes Amos Comenius OP JAC “Application potential development in the field of polymer materials in the context of circular economy compliance (POCEK)″, under Grant Number CZ.02.01.01/00/23_021/0009004. The authors are further grateful for cofunding from the development process of the Centre of Polymer Systems, Tomas Bata University in Zlin, program DKRVO (RP/CPS/2024-28/002) supported by the Ministry of Education, Youth and Sports of the Czech Republic.
utb.wos.affiliation [Pistekova, Hana; Dusankova, Miroslava; Sopik, Tomas; Klaban, Jakub; Dostalkova, Jitka; Moucka, Robert; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, Zlin, 760 01, Czech Republic
utb.fulltext.projects CZ.10.03.01/00/22_003/0000045
utb.fulltext.projects CZ.02.01.01/00/23_021/0009004
utb.fulltext.projects DKRVO (RP/CPS/2024-28/002)
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Files in this item

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International