Publikace UTB
Repozitář publikační činnosti UTB

An experimental investigation into trochoidal milling for high-quality GFRP machining

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title An experimental investigation into trochoidal milling for high-quality GFRP machining en
dc.contributor.author Bílek, Ondřej
dc.contributor.author Řezníček, Martin
dc.contributor.author Matras, Andrzej
dc.contributor.author Solařík, Tomáš
dc.contributor.author Macků, Lubomír
dc.relation.ispartof Materials
dc.identifier.issn 1996-1944 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 18
utb.relation.issue 7
dc.type article
dc.language.iso en
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI)
dc.identifier.doi 10.3390/ma18071669
dc.relation.uri https://www.mdpi.com/1996-1944/18/7/1669
dc.subject adaptive milling en
dc.subject anisotropic materials en
dc.subject burr formation en
dc.subject composite machining en
dc.subject cutting forces en
dc.subject GFRP en
dc.subject hybrid strategy en
dc.subject surface roughness en
dc.subject tool wear en
dc.subject trochoidal milling en
dc.description.abstract This study investigates the effectiveness of trochoidal (adaptive) milling in machining Glass Fiber Reinforced Polymer (GFRP), emphasizing its potential advantages over conventional milling. Six coated solid carbide end mills, each with distinct geometries, were evaluated under identical conditions to assess the cutting forces, surface quality, dimensional accuracy, burr formation, chip size distribution, and tool wear. Trochoidal milling demonstrated shorter cycle times—up to 23% faster—and higher material removal rates (MRRs), while conventional milling provided superior dimensional control and smoother surfaces in certain fiber-sensitive regions. A four-tooth cutter with a low helix angle (10°) and aluminum-oxide coating delivered the best overall performance, balancing minimal tool wear with high-quality finishes (arithmetic mean roughness, Ra, as low as 1.36 μm). The results indicate that although conventional milling can exhibit a 25%-lower RMS cutting force, its peak forces and extended machining times may limit the throughput. Conversely, trochoidal milling, when coupled with an appropriately robust tool, effectively manages the cutting forces, improves the surface quality, and reduces the machining time. Most chips produced were less than 11 μm in size, highlighting the need for suitable dust extraction. Notably, a hybrid approach—trochoidal roughing followed by conventional finishing—offers a promising method for achieving both efficient material removal and enhanced dimensional accuracy in GFRP components. © 2025 by the authors. en
utb.faculty Faculty of Technology
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012439
utb.identifier.scopus 2-s2.0-105002565630
utb.source j-scopus
dc.date.accessioned 2025-06-20T09:36:15Z
dc.date.available 2025-06-20T09:36:15Z
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Production Engineering
utb.ou Department of Process Control
utb.contributor.internalauthor Bílek, Ondřej
utb.contributor.internalauthor Řezníček, Martin
utb.contributor.internalauthor Solařík, Tomáš
utb.contributor.internalauthor Macků, Lubomír
utb.fulltext.sponsorship This research received no external funding.
utb.scopus.affiliation Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, Zlín, 76001, Czech Republic; Department of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology, Cracow, 31-155, Poland; Department of Process Control, Faculty of Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4551, Zlín, 76005, Czech Republic
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International