Publikace UTB
Repozitář publikační činnosti UTB

Integration of gold nanoparticles into BiVO4/WO3 photoanodes via electrochromic activation of WO3 for enhanced photoelectrochemical water splitting

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Integration of gold nanoparticles into BiVO4/WO3 photoanodes via electrochromic activation of WO3 for enhanced photoelectrochemical water splitting en
dc.contributor.author Güler, Ali Can
dc.contributor.author Masař, Milan
dc.contributor.author Urbánek, Michal
dc.contributor.author Machovský, Michal
dc.contributor.author Elnagar, Mohamed M.
dc.contributor.author Beránek, Radim
dc.contributor.author Kuřitka, Ivo
dc.relation.ispartof ACS Applied Energy Materials
dc.identifier.issn 2574-0962 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
dc.type article
dc.language.iso en
dc.publisher American Chemical Society
dc.identifier.doi 10.1021/acsaem.4c02735
dc.relation.uri https://pubs.acs.org/doi/10.1021/acsaem.4c02735
dc.relation.uri https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02735?ref=article_openPDF
dc.subject bismuth vanadate en
dc.subject tungstenoxide en
dc.subject electrochromism en
dc.subject gold nanoparticles en
dc.subject surface plasmon resonance en
dc.subject ternary junction en
dc.subject photoelectrochemicalwater splitting en
dc.description.abstract The development of highly efficient photoanodes is crucial for enhancing the energy conversion efficiency in photoelectrochemical water splitting. Herein, we report an innovative approach to fabricating an Au/BiVO4/WO3 ternary junction that leverages the unique benefits of WO3 for efficient electron transport, BiVO4 for broadband light absorption, and Au nanoparticles (NPs) for surface plasmon effects. The BiVO4/WO3 binary junction was constructed by depositing a BiVO4 layer onto the surface of the WO3 nanobricks via consecutive drop casting. Au NPs were subsequently integrated into the BiVO4/WO3 structure through electrochromic activation of WO3. The optimal BiVO4 loading for the highest-performing BiVO4/WO3 heterostructure and the light intensity dependence of the photocurrent efficiency were also determined. Flat-band potential measurements confirmed an appropriate band alignment that facilitates electron transfer from BiVO4 to WO3, while work function measurements corroborated the formation of a Schottky barrier between the incorporated Au NPs and BiVO4/WO3, improving charge separation. The best-performing Au NP-sensitized BiVO4/WO3 photoanode thin films exhibited a photocurrent density of 0.578 mA cm-2 at 1.23 V vs RHE under AM 1.5G (1 sun) illumination and a maximum applied-bias photoconversion efficiency of 0.036% at 1.09 V vs RHE, representing an enhancement factor of 12 and 2.3 compared to those of pristine BiVO4 and WO3 photoanodes, respectively. This study presents a promising and scalable route for fabricating noble metal-sensitized, metal oxide-based nanocomposite photoanodes for solar water splitting. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1012391
utb.identifier.scopus 2-s2.0-105001525877
utb.identifier.wok 001455051000001
utb.source j-scopus
dc.date.accessioned 2025-05-09T08:50:16Z
dc.date.available 2025-05-09T08:50:16Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic DKRVO, (RP/CPS/2024-28/007); INTER-EXCELLENCE, (LTT20010); Horizon 2020, (739566, 101122061); Horizon 2020
dc.description.sponsorship Horizon 2020 Framework Programme [RP/CPS/2024-28/007, LTT20010]; Ministry of Education, Youth and Sports of the Czech Republic DKRVO [739566, 101122061]; European Union's Horizon 2020 research and innovation programme [CIT-ZK]; Intelligence & Talent for the Zlin Region
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Güler, Ali Can
utb.contributor.internalauthor Masař, Milan
utb.contributor.internalauthor Urbánek, Michal
utb.contributor.internalauthor Machovský, Michal
utb.contributor.internalauthor Kuřitka, Ivo
utb.fulltext.sponsorship This work is supported by the Ministry of Education, Youth and Sports of the Czech Republic DKRVO (RP/CPS/2024-28/007) and INTER-EXCELLENCE (LTT20010). Also, this work is a part of dissemination activities of project FunGlass. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No. 739566 and No. 101122061 (SUNGATE). A. C. Güler also expresses his gratitude for support within the “Creativity, Intelligence & Talent for the Zlín Region” (CIT─ZK) programme.
utb.wos.affiliation [Guler, Ali Can; Masar, Milan; Urbanek, Michal; Machovsky, Michal; Kuritka, Ivo] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin 76001, Czech Republic; [Elnagar, Mohamed M.; Beranek, Radim] Ulm Univ, Inst Electrochem, D-89081 Ulm, Germany; [Kuritka, Ivo] Tomas Bata Univ Zlin, Fac Technol, Dept Chem, Zlin 76001, Czech Republic; [Guler, Ali Can] Jagiellonian Univ, Fac Chem, PL-30387 Krakow, Poland
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, 760 01, Czech Republic; Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm, 89081, Germany; Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, Zlín, 760 01, Czech Republic; Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Kraków, 30-387, Poland
utb.fulltext.projects DKRVO (RP/CPS/2024-28/007)
utb.fulltext.projects LTT20010
utb.fulltext.projects Horizon 2020 739566
utb.fulltext.projects Horizon 2020 101122061
utb.fulltext.projects (CIT─ZK)
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International