Publikace UTB
Repozitář publikační činnosti UTB

Fuzzy masks for correlation matrix pruning

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Fuzzy masks for correlation matrix pruning en
dc.contributor.author Dudáš, Adam
dc.contributor.author Michalíková, Alžběta
dc.contributor.author Jašek, Roman
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
dc.citation.spage 35387
dc.citation.epage 35400
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2025.3544027
dc.relation.uri https://ieeexplore.ieee.org/document/10896637
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10896637
dc.subject correlation en
dc.subject decision making en
dc.subject analytical models en
dc.subject measurement en
dc.subject fuzzy sets en
dc.subject fuzzy logic en
dc.subject correlation coefficient en
dc.subject computational modeling en
dc.subject uncertainty en
dc.subject data visualization en
dc.subject correlation analysis en
dc.subject correlation matrices en
dc.subject fuzzy logic en
dc.subject fuzzy masks en
dc.description.abstract Among statistical methods used in data analysis processes, correlation analysis holds one of the most significant places. Using correlation, analysts measure prediction potential between values of a pair of attributes of a dataset which can be summarized into a correlation matrix for any multidimensional dataset. Such matrices are usually sizable, and hard to read. Pruning of the correlation matrix for the precise selection of attribute pairs of a considered dataset which bear strong prediction potential is conventionally conducted via correlation matrix masks. Since these masks are commonly designed as crisp borders for the acceptability of values in the matrix, there is a strong lack of nuance in this approach. The work presented in the scope of this study focuses on the design and implementation of fuzzy masks for correlation matrices. This objective is divided into three main tasks - firstly, the visualization of correlation coefficient value frequency and its relationship to fuzzy membership function is designed and implemented, then visualisation of basic regression analysis and correlation context of attribute pairs in the fuzzy area of a studied dataset is designed and implemented, and lastly, the proposed approach is evaluated via case studies on three benchmarking datasets. The results obtained with the fuzzy approach to correlation matrix masks show a qualitative improvement in the matrix pruning task and a more appropriate identification of the relevant parts of the dataset compared to the conventional, crips approach. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012382
utb.identifier.scopus 2-s2.0-85218771741
utb.identifier.wok 001433330600009
utb.source j-scopus
dc.date.accessioned 2025-04-07T07:16:59Z
dc.date.available 2025-04-07T07:16:59Z
dc.description.sponsorship OZ Príroda of Faculty of Natural Sciences; Matej Bel University
dc.description.sponsorship OZ Priroda of Faculty of Natural Sciences, Matej Bel University, Banska Bystrica, Slovakia
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Informatics and Artificial Intelligence
utb.contributor.internalauthor Jašek, Roman
utb.wos.affiliation [Dudas, Adam; Michalikova, Alzbeta] Matej Bel Univ, Fac Nat Sci, Dept Comp Sci, Banska Bystrica 94701, Slovakia; [Michalikova, Alzbeta] Slovak Acad Sci, Math Inst, Banska Bystrica 97401, Slovakia; [Jasek, Roman] Tomas Bata Univ Zlin, Fac Appl Informat, Dept Informat & Artificial Intelligence, Zlin 76005, Czech Republic
utb.scopus.affiliation Matej Bel University, Faculty of Natural Sciences, Department of Computer Science, Tajovského 40, Banská Bystrica, 974 01, Slovakia; Slovak Academy of Sciences, Mathematical Institute, Ďumbierska 1, Banská Bystrica, 974 01, Slovakia; Tomáš Baťa University in Zlín, Faculty of Applied Informatics, Department of Informatics and Artificial Intelligence, Zlín, 76005, Czech Republic
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International