Publikace UTB
Repozitář publikační činnosti UTB

Advanced signal processing techniques for monitoring east/west oriented solar photovoltaic systems: A case study

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Advanced signal processing techniques for monitoring east/west oriented solar photovoltaic systems: A case study en
dc.contributor.author Procházka, Aleš
dc.contributor.author Švihlík, Jan
dc.contributor.author Charvátová, Hana
dc.contributor.author Mařík, Vladimír
dc.relation.ispartof IEEE Access
dc.identifier.issn 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 12
dc.citation.spage 165042
dc.citation.epage 165049
dc.type article
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/ACCESS.2024.3492017
dc.relation.uri https://xplorestaging.ieee.org/ielx8/6287639/10380310/10744544.pdf
dc.subject photovoltaic systems en
dc.subject monitoring en
dc.subject solar power generation en
dc.subject signal processing en
dc.subject renewable energy sources en
dc.subject feature extraction en
dc.subject solar system en
dc.subject solar irradiance en
dc.subject signal processing algorithms en
dc.subject graphical user interfaces en
dc.subject renewable energy en
dc.subject computational intelligence en
dc.subject multichannel signal processing en
dc.subject signal features evaluation en
dc.subject fault detection en
dc.description.abstract Solar photovoltaic (PV) systems are increasingly recognized as crucial sustainable energy sources with diverse applications. Their implementation leverages rapid advancements in material engineering, communication systems, and computational intelligence tools. This paper focuses on selected mathematical methods for analyzing time series of power generated by PV systems, including numerical methods and algorithms for multichannel signal processing, digital filtering, and signal feature extraction. These methods monitor the characteristics of individual PV panels and identify their feature clusters. Specifically, it examines systems with east/west oriented photovoltaic panels, employing statistical methods and computational tools to analyze power signals, assess time and positioning data, evaluate symmetry coefficients, and apply machine learning tools to detect potential panel failures. Additionally, a general graphical user interface for data analysis is proposed. A detailed case study is presented, analyzing the distribution of selected features over time segments of a PV system comprising seven east-oriented and seven west-oriented panels, with data recorded over a selected set of days at a sampling rate of 15 minutes. The results reveal distinct and well-separated feature clusters for healthy PV panels. General conclusions underscore the effectiveness of signal processing tools in the statistical analysis of PV systems and the potential of feature clustering and symmetry estimation for evaluating disorders of system behaviour using communication technologies, data storage, and remote system monitoring. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012326
utb.identifier.scopus 2-s2.0-85208669750
utb.identifier.wok 001354547300001
utb.source j-scopus
dc.date.accessioned 2025-01-30T10:36:22Z
dc.date.available 2025-01-30T10:36:22Z
dc.description.sponsorship Data Acquisition; European Commission, EC, (CZ.02.01.01/00/22_008/0004590); Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT, (SENDISO - CZ.02.01.01/00/22_008/0004596)
dc.description.sponsorship European Union [CZ.02.01.01/00/22_008/0004590]; Data Acquisition through Operational Programme Johannes Amos Comenius; European Structural and Investment Funds; Czech Ministry of Education, Youth and Sports [SENDISO-CZ.02.01.01/00/22_008/0004596]
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Charvátová, Hana
utb.fulltext.sponsorship This work was supported in part by European Union under the Project Robotics and Advanced Industrial Production (ROBOPROX) in the Area of Machine Learning under Grant CZ.02.01.01/00/22_008/0004590; and in part by the Data Acquisition through OperationalProgramme Johannes Amos Comenius financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports under Project SENDISO-CZ.02.01.01/00/22_008/0004596.
utb.wos.affiliation [Prochazka, Ales; Svihlik, Jan] Univ Chem & Technol Prague, Dept Math Informat & Cybernet, Prague 16000, Czech Republic; [Prochazka, Ales; Marik, Vladimir] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Prague 16000, Czech Republic; [Svihlik, Jan] Czech Tech Univ, Fac Elect Engn, Prague 16000, Czech Republic; [Charvatova, Hana] Tomas Bata Univ, Fac Appl Informat, Zlin 76001, Czech Republic
utb.scopus.affiliation University Of Chemistry And Technology In Prague, Department Of Mathematics, Informatics And Cybernetics, Prague, 160 00, Czech Republic; Czech Institute Of Informatics, Robotics And Cybernetics, Prague, 160 00, Czech Republic; Czech Technical University In Prague, Faculty Of Electrical Engineering, Prague, 160 00, Czech Republic; Tomas Bata University, Faculty Of Applied Informatics, Prague, 160 00, Czech Republic
utb.fulltext.projects CZ.02.01.01/00/22_008/0004590
utb.fulltext.projects SENDISO-CZ.02.01.01/00/22_008/0004596.
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International