Publikace UTB
Repozitář publikační činnosti UTB

Revealing essential notions: an algorithmic approach to distilling core concepts from student and teacher responses in computer science education

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Revealing essential notions: an algorithmic approach to distilling core concepts from student and teacher responses in computer science education en
dc.contributor.author Amur, Zaira Hassan
dc.contributor.author Hooi, Yew Kwang
dc.contributor.author Soomro, Gul Muhammad
dc.contributor.author Bhanbhro, Hina
dc.relation.ispartof Applied Computing and Informatics
dc.identifier.issn 2634-1964 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 2210-8327 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
dc.type article
dc.language.iso en
dc.publisher Emerald Publishing
dc.identifier.doi 10.1108/ACI-12-2023-0207
dc.relation.uri https://www.emerald.com/insight/content/doi/10.1108/aci-12-2023-0207/full/html
dc.subject key concepts en
dc.subject teacher-student model en
dc.subject core ideas en
dc.subject concept detection en
dc.subject dynamic of learning en
dc.description.abstract Purpose: This study aims to assess subjective responses in computer science education to understand students' grasp of core concepts. Extracting key ideas from short answers remains challenging, necessitating an effective method to enhance learning outcomes. Design/methodology/approach: This study introduces KeydistilTF, a model to identify essential concepts from student and teacher responses. Using the University of North Texas dataset from Kaggle, consisting of 53 teachers and 1,705 student responses, the model's performance was evaluated using the F1 score for key concept detection. Findings: KeydistilTF outperformed baseline techniques with F1 scores improved by 8, 6 and 4% for student key concept detection and 10, 8 and 6% for teacher key concept detection. These results indicate the model's effectiveness in capturing crucial concepts and enhancing the understanding of key curriculum content. Originality/value: KeydistilTF shows promise in improving the assessment of subjective responses in education, offering insights that can inform teaching methods and learning strategies. Its superior performance over baseline methods underscores its potential as a valuable tool in educational settings. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012323
utb.identifier.scopus 2-s2.0-85210597009
utb.identifier.wok 001365950000001
utb.source j-scopus
dc.date.accessioned 2025-01-30T10:36:21Z
dc.date.available 2025-01-30T10:36:21Z
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Artificial Intelligence
utb.contributor.internalauthor Soomro, Gul Muhammad
utb.wos.affiliation [Amur, Zaira Hassan; Hooi, Yew Kwang] Univ Teknol PETRONAS, Dept Comp & Informat Sci, Seri Iskandar, Malaysia; [Soomro, Gul Muhammad] Tomas Bata Univ Zlin, Dept Artificial Intelligence, Zlin, Czech Republic; [Bhanbhro, Hina] Univ Teknol PETRONAS, Seri Iskandar, Malaysia
utb.scopus.affiliation Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Department of Artificial Intelligence, Tomas Bata University in Zlin, Zlin, Czech Republic; Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International